当前位置: 首页 > news >正文

YOLOv10实时端到端目标检测

文章目录

    • 前言
    • 一、非极值大抑制(NMS)
    • 二、NMS算法的具体原理和步骤
    • 三、YOLOV10创新点
    • 四、YOLOv10使用教程
    • 五、官方github地址


前言

  距离上次写YOLOv5已经过去了两年,正好最近用YOLOv10重构了项目,总结下YOLOv10。
YOLOv10真正实时端到端目标检测,那么什么是端到端?
  端到端目标检测是一种从原始数据输入到最终结果输出的直接过程,无需分步骤处理或人工干预。在YOLOv10中移除非最大抑制(NMS),从而减少了推理延迟。


一、非极值大抑制(NMS)

  非最大值抑制(NMS)是一种在目标检测中广泛应用的算法,主要用于去除冗余的检测框,只保留最有可能包含目标物体的框。
    在目标检测任务中,通常会有多个候选框同时检测到同一个目标,这些框之间会有不同程度的重叠。为了从这些重叠的框中筛选出最佳检测结果,NMS算法被提出和应用。
在这里插入图片描述

二、NMS算法的具体原理和步骤

  1.置信度排序:根据每个边界框的置信度进行降序排列,置信度最高的边界框被认为是最有可能正确检测到目标的。

  2.选择边界框:从排序后的列表中选择置信度最高的边界框,标记为已选,并将其添加到最终的检测结果列表中。

  3.计算交并比:对于剩余的每个边界框,计算它与已选边界框的交并比(IOU),即交集与并集的比值。

  4.剔除低置信度框:如果某个边界框与已选框的IOU超过了预设的阈值(例如0.5或0.7),则认为这两个框表示的是同一个目标,于是根据置信度较低的原则,剔除这个低置信度的边界框。

  5.重复选择过程:继续选择剩余边界框中置信度最高的,重复计算IOU和剔除过程,直到所有边界框都被检查过。

  6.结束,选出最优框

三、YOLOV10创新点

  YOLOv10通过引入双重标签分配策略和一致匹配度量,成功去除了非最大抑制(NMS)机制。
  双重标签分配策略:其中包括一对多和一对一两种分配模式。这种策略不仅提供了丰富的监督信号,确保了训练过程中的准确性,而且避免了在推理阶段使用NMS,从而提高了整体的效率。这一创新的方法有效地平衡了训练与推理之间的需求。
  一致匹配度量:该策略确保了在训练过程中,不同的预测头产生的预测结果能够保持一致性。这种一致性的优化进一步保证了在去除NMS的情况下,模型仍然能够维持高性能和高准确性。

四、YOLOv10使用教程

  YOLOv10进行了高度封装,使用步骤也很简单,我常规的使用方法是通过OpenCV读取rtsp流进行检测

import cv2
from ultralytics import YOLOv10
detect = YOLOv10("yolov10s.pt")if __name__ == '__main__':cap = cv2.VideoCapture(rtsp)while cap.isOpened():success, frame = cap.read()if success:# conf指定阈值 classes指定检测类目results = detect.predict(frame, conf=0.5, classes=[0])# 返回json格式的数据,需要不同的格式具体可以查看源码print(results[0].tojson())else:cap = cv2.VideoCapture(rtsp)

YOLOv10 提供了多种模型:

模型说明
YOLOv10-N用于资源极其有限环境的纳米版本
YOLOv10-S兼顾速度和精度的小型版本
YOLOv10-M通用中型版本
YOLOv10-B平衡型,宽度增加,精度更高
YOLOv10-L大型版本,精度更高,但计算资源增加
YOLOv10-X超大型版本可实现最高精度和性能

五、官方github地址

https://github.com/THU-MIG/yolov10

相关文章:

YOLOv10实时端到端目标检测

文章目录 前言一、非极值大抑制(NMS)二、NMS算法的具体原理和步骤三、YOLOV10创新点四、YOLOv10使用教程五、官方github地址 前言 距离上次写YOLOv5已经过去了两年,正好最近用YOLOv10重构了项目,总结下YOLOv10。 YOLOv10真正实时端到端目标检测&#xff…...

Java中的Annotation注解

常用注解 override:重写方法deprecated:弃用SuppressWarnings:抑制编译器警告 元注解(注解的注解) Target:描述注解所能修饰的类型Retention:描述注解的生命周期(SOURCE源代码、C…...

小五金加工:细节决定产品质量与性能

在小五金加工领域,细节往往决定着最终产品的质量、性能以及市场竞争力。看似微不足道的细微之处,实际上蕴含着巨大的影响。时利和将介绍小五金加工中细节的重要性。 首先,细节关乎产品的精度。小五金零件通常尺寸较小,但对精度的要…...

VS Code安装配置ssh服务结合内网穿透远程连接本地服务器详细步骤

文章目录 前言1. 安装OpenSSH2.VS Code配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…...

世界首位「AI科学家」问世!独立生成10篇学术论文! 横扫「顶会」?

大家好,我是 Bob! 😊 一个想和大家慢慢变富的 AI 程序员💸 分享 AI 前沿技术、项目经验、面试技巧! 欢迎关注我,一起探索,一起破圈!💪 AI科学家出世 最近一位人工智能AI科学家横空出世。 它是…...

【高阶数据结构】图

图 1. 图的基本概念2. 图的存储结构2.1 邻接矩阵2.2 邻接表2.3 邻接矩阵的实现2.4 邻接表的实现 3. 图的遍历3.1 图的广度优先遍历3.2 图的深度优先遍历 4. 最小生成树4.1 Kruskal算法4.2 Prim算法 5. 最短路径5.1 单源最短路径--Dijkstra算法5.2 单源最短路径--Bellman-Ford算…...

调研-音视频

音视频 基础概念主要内容音频基础概念音频量化过程音频压缩技术视频基础概念视频bug视频编码H264视频像素格式YUVRGB参考文献基础概念 ● 实时音视频应用环节 ○ 采集、编码、前后处理、传输、解码、缓冲、渲染等很多环节。 主要内容 音频 基础概念 三要素:音调(音频)、…...

【数据结构】链式结构实现:二叉树

二叉树 一.快速创建一颗二叉树二.二叉树的遍历1.前序、中序、后序遍历(深度优先遍历DFS)2.层序遍历(广度优先遍历BFS) 三.二叉树节点的个数四.二叉树叶子节点的个数五.二叉树的高度六.二叉树第k层节点个数七.二叉树查找值为x的节点…...

20221元组

在Python语言中, (7)是一种可变的、有序的序列结构,其中元素可以重复。 A.元组(tuple) B. 字符串(str) C. 列表(list) D.集合(set) ChatGPT 说: ChatGPT 在Python中,选项 C 列表(list) 符合题目描述。 解释: 列表 (list) 是一种可变的、有…...

艾瑞白皮书解读(三)丨剖析制造业、工程设计、创投数据治理痛点与典型方案

2024年7月 艾瑞咨询公司对国内数据治理行业进行了研究,访问了国内多位大中型企业数据治理相关负责人,深度剖析中国企业在数字化转型过程中面临到的核心数据问题后,重磅发布《2024中国企业数据治理白皮书》(以下简称“白皮书”&…...

如何在 Odoo 16 Studio 模块中自定义视图和报告

为了有效地运营公司,需要定制的软件系统。Odoo 平台提供针对单个应用程序量身定制的管理解决方案和用户友好的界面,以便开发应用程序,而无需更复杂的后端功能。该平台支持使用简单的拖放功能和内置工具创建和修改更多定制的 Odoo 应用程序。企…...

Redis的十大数据类型的常用命令(上)

目录 1.key的操作命令2.String的常用命令案例一:dy点赞案例二:文章的喜欢数 3. List的常用命令案例:公众号订阅的消息 4. Hash的常用命令案例:早期购物车设计 5. Set的常用命令案例一:抽奖小程序案例二:朋友…...

智慧服务管理平台小程序开发方案

智慧服务管理平台小程序系统为用户提供一站式、个性化的服务管理解决方案,帮助用户优化服务流程、提升服务效率、增强客户满意度。适用于智慧校园、食堂、养老、智慧停车、智慧园区、智慧医院、智慧农业、康养、智慧社区、智慧农场等行业场景。一、目标用户 企业客户…...

【轻松拿捏】Java中ArrayList 和 LinkedList 的区别是什么?

ArrayList 和 LinkedList 的区别是什么? 1. ArrayList 2. LinkedList 3.总结 🎈边走、边悟🎈迟早会好 ArrayList 和 LinkedList 都是 Java 中常用的 List 接口的实现类,但它们在内部结构和操作性能上有所不同。 1. ArrayLis…...

【排序篇】快速排序的非递归实现与归并排序的实现

🌈个人主页:Yui_ 🌈Linux专栏:Linux 🌈C语言笔记专栏:C语言笔记 🌈数据结构专栏:数据结构 文章目录 1 快速排序非递归2. 归并排序3.排序算法复杂度及稳定性分析 1 快速排序非递归 利…...

Java垃圾收集器工作原理

在Java编程中,对象的内存分配主要发生在堆(Heap)上。堆是Java虚拟机(JVM)中的一块运行时数据区,用于存放由new关键字创建的对象和数组。与栈(Stack)内存分配相比,堆内存分…...

STM32CubeMX stm32不限长度使用DMA收发串口数据

STM32CubeMX 配置 代码 stm32h7xx_it.c /*** brief This function handles UART7 global interrupt.*/ void UART7_IRQHandler(void) {/* USER CODE BEGIN UART7_IRQn 0 */if (UART7 huart7.Instance) // 判断是否是空闲中断{if (__HAL_UART_GET_FLAG(&huart7, UART_FLA…...

Jmeter系列之作用域、执行顺序

这一节主要解释元件作用域和执行顺序,以及整理之前说过的参数化的方式。 作用域 之前也留下了一个问题。怎么给不同的请求设置不同的Header?后续也透露了可以使用Sample Controller,结合元件的作用域来实现 在Jmeter中,元件的作…...

舜宇光学科技社招校招入职测评:商业推理测验真题汇总、答题要求、高分技巧

舜宇光学科技(集团)有限公司,成立于1984年,是全球领先的综合光学零件及产品制造商。2007年在香港联交所主板上市,股票代码2382.HK。公司专注于光学产品的设计、研发、生产及销售,产品广泛应用于手机、汽车、…...

C语言——构造(结构体)

指针——内存操作 我们对于内存的操作借助于 <string.h>这个库提供的内存操作函数。 内存填充 头文件: #include<string.h> 函数原型: void*memset(void *s,int c,size_t n); 函数功能&#xff1a; 填充s开始的堆内存空间前n个字节&#xff0c;使得每个字节值为c…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...