当前位置: 首页 > news >正文

YOLOv10实时端到端目标检测

文章目录

    • 前言
    • 一、非极值大抑制(NMS)
    • 二、NMS算法的具体原理和步骤
    • 三、YOLOV10创新点
    • 四、YOLOv10使用教程
    • 五、官方github地址


前言

  距离上次写YOLOv5已经过去了两年,正好最近用YOLOv10重构了项目,总结下YOLOv10。
YOLOv10真正实时端到端目标检测,那么什么是端到端?
  端到端目标检测是一种从原始数据输入到最终结果输出的直接过程,无需分步骤处理或人工干预。在YOLOv10中移除非最大抑制(NMS),从而减少了推理延迟。


一、非极值大抑制(NMS)

  非最大值抑制(NMS)是一种在目标检测中广泛应用的算法,主要用于去除冗余的检测框,只保留最有可能包含目标物体的框。
    在目标检测任务中,通常会有多个候选框同时检测到同一个目标,这些框之间会有不同程度的重叠。为了从这些重叠的框中筛选出最佳检测结果,NMS算法被提出和应用。
在这里插入图片描述

二、NMS算法的具体原理和步骤

  1.置信度排序:根据每个边界框的置信度进行降序排列,置信度最高的边界框被认为是最有可能正确检测到目标的。

  2.选择边界框:从排序后的列表中选择置信度最高的边界框,标记为已选,并将其添加到最终的检测结果列表中。

  3.计算交并比:对于剩余的每个边界框,计算它与已选边界框的交并比(IOU),即交集与并集的比值。

  4.剔除低置信度框:如果某个边界框与已选框的IOU超过了预设的阈值(例如0.5或0.7),则认为这两个框表示的是同一个目标,于是根据置信度较低的原则,剔除这个低置信度的边界框。

  5.重复选择过程:继续选择剩余边界框中置信度最高的,重复计算IOU和剔除过程,直到所有边界框都被检查过。

  6.结束,选出最优框

三、YOLOV10创新点

  YOLOv10通过引入双重标签分配策略和一致匹配度量,成功去除了非最大抑制(NMS)机制。
  双重标签分配策略:其中包括一对多和一对一两种分配模式。这种策略不仅提供了丰富的监督信号,确保了训练过程中的准确性,而且避免了在推理阶段使用NMS,从而提高了整体的效率。这一创新的方法有效地平衡了训练与推理之间的需求。
  一致匹配度量:该策略确保了在训练过程中,不同的预测头产生的预测结果能够保持一致性。这种一致性的优化进一步保证了在去除NMS的情况下,模型仍然能够维持高性能和高准确性。

四、YOLOv10使用教程

  YOLOv10进行了高度封装,使用步骤也很简单,我常规的使用方法是通过OpenCV读取rtsp流进行检测

import cv2
from ultralytics import YOLOv10
detect = YOLOv10("yolov10s.pt")if __name__ == '__main__':cap = cv2.VideoCapture(rtsp)while cap.isOpened():success, frame = cap.read()if success:# conf指定阈值 classes指定检测类目results = detect.predict(frame, conf=0.5, classes=[0])# 返回json格式的数据,需要不同的格式具体可以查看源码print(results[0].tojson())else:cap = cv2.VideoCapture(rtsp)

YOLOv10 提供了多种模型:

模型说明
YOLOv10-N用于资源极其有限环境的纳米版本
YOLOv10-S兼顾速度和精度的小型版本
YOLOv10-M通用中型版本
YOLOv10-B平衡型,宽度增加,精度更高
YOLOv10-L大型版本,精度更高,但计算资源增加
YOLOv10-X超大型版本可实现最高精度和性能

五、官方github地址

https://github.com/THU-MIG/yolov10

相关文章:

YOLOv10实时端到端目标检测

文章目录 前言一、非极值大抑制(NMS)二、NMS算法的具体原理和步骤三、YOLOV10创新点四、YOLOv10使用教程五、官方github地址 前言 距离上次写YOLOv5已经过去了两年,正好最近用YOLOv10重构了项目,总结下YOLOv10。 YOLOv10真正实时端到端目标检测&#xff…...

Java中的Annotation注解

常用注解 override:重写方法deprecated:弃用SuppressWarnings:抑制编译器警告 元注解(注解的注解) Target:描述注解所能修饰的类型Retention:描述注解的生命周期(SOURCE源代码、C…...

小五金加工:细节决定产品质量与性能

在小五金加工领域,细节往往决定着最终产品的质量、性能以及市场竞争力。看似微不足道的细微之处,实际上蕴含着巨大的影响。时利和将介绍小五金加工中细节的重要性。 首先,细节关乎产品的精度。小五金零件通常尺寸较小,但对精度的要…...

VS Code安装配置ssh服务结合内网穿透远程连接本地服务器详细步骤

文章目录 前言1. 安装OpenSSH2.VS Code配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…...

世界首位「AI科学家」问世!独立生成10篇学术论文! 横扫「顶会」?

大家好,我是 Bob! 😊 一个想和大家慢慢变富的 AI 程序员💸 分享 AI 前沿技术、项目经验、面试技巧! 欢迎关注我,一起探索,一起破圈!💪 AI科学家出世 最近一位人工智能AI科学家横空出世。 它是…...

【高阶数据结构】图

图 1. 图的基本概念2. 图的存储结构2.1 邻接矩阵2.2 邻接表2.3 邻接矩阵的实现2.4 邻接表的实现 3. 图的遍历3.1 图的广度优先遍历3.2 图的深度优先遍历 4. 最小生成树4.1 Kruskal算法4.2 Prim算法 5. 最短路径5.1 单源最短路径--Dijkstra算法5.2 单源最短路径--Bellman-Ford算…...

调研-音视频

音视频 基础概念主要内容音频基础概念音频量化过程音频压缩技术视频基础概念视频bug视频编码H264视频像素格式YUVRGB参考文献基础概念 ● 实时音视频应用环节 ○ 采集、编码、前后处理、传输、解码、缓冲、渲染等很多环节。 主要内容 音频 基础概念 三要素:音调(音频)、…...

【数据结构】链式结构实现:二叉树

二叉树 一.快速创建一颗二叉树二.二叉树的遍历1.前序、中序、后序遍历(深度优先遍历DFS)2.层序遍历(广度优先遍历BFS) 三.二叉树节点的个数四.二叉树叶子节点的个数五.二叉树的高度六.二叉树第k层节点个数七.二叉树查找值为x的节点…...

20221元组

在Python语言中, (7)是一种可变的、有序的序列结构,其中元素可以重复。 A.元组(tuple) B. 字符串(str) C. 列表(list) D.集合(set) ChatGPT 说: ChatGPT 在Python中,选项 C 列表(list) 符合题目描述。 解释: 列表 (list) 是一种可变的、有…...

艾瑞白皮书解读(三)丨剖析制造业、工程设计、创投数据治理痛点与典型方案

2024年7月 艾瑞咨询公司对国内数据治理行业进行了研究,访问了国内多位大中型企业数据治理相关负责人,深度剖析中国企业在数字化转型过程中面临到的核心数据问题后,重磅发布《2024中国企业数据治理白皮书》(以下简称“白皮书”&…...

如何在 Odoo 16 Studio 模块中自定义视图和报告

为了有效地运营公司,需要定制的软件系统。Odoo 平台提供针对单个应用程序量身定制的管理解决方案和用户友好的界面,以便开发应用程序,而无需更复杂的后端功能。该平台支持使用简单的拖放功能和内置工具创建和修改更多定制的 Odoo 应用程序。企…...

Redis的十大数据类型的常用命令(上)

目录 1.key的操作命令2.String的常用命令案例一:dy点赞案例二:文章的喜欢数 3. List的常用命令案例:公众号订阅的消息 4. Hash的常用命令案例:早期购物车设计 5. Set的常用命令案例一:抽奖小程序案例二:朋友…...

智慧服务管理平台小程序开发方案

智慧服务管理平台小程序系统为用户提供一站式、个性化的服务管理解决方案,帮助用户优化服务流程、提升服务效率、增强客户满意度。适用于智慧校园、食堂、养老、智慧停车、智慧园区、智慧医院、智慧农业、康养、智慧社区、智慧农场等行业场景。一、目标用户 企业客户…...

【轻松拿捏】Java中ArrayList 和 LinkedList 的区别是什么?

ArrayList 和 LinkedList 的区别是什么? 1. ArrayList 2. LinkedList 3.总结 🎈边走、边悟🎈迟早会好 ArrayList 和 LinkedList 都是 Java 中常用的 List 接口的实现类,但它们在内部结构和操作性能上有所不同。 1. ArrayLis…...

【排序篇】快速排序的非递归实现与归并排序的实现

🌈个人主页:Yui_ 🌈Linux专栏:Linux 🌈C语言笔记专栏:C语言笔记 🌈数据结构专栏:数据结构 文章目录 1 快速排序非递归2. 归并排序3.排序算法复杂度及稳定性分析 1 快速排序非递归 利…...

Java垃圾收集器工作原理

在Java编程中,对象的内存分配主要发生在堆(Heap)上。堆是Java虚拟机(JVM)中的一块运行时数据区,用于存放由new关键字创建的对象和数组。与栈(Stack)内存分配相比,堆内存分…...

STM32CubeMX stm32不限长度使用DMA收发串口数据

STM32CubeMX 配置 代码 stm32h7xx_it.c /*** brief This function handles UART7 global interrupt.*/ void UART7_IRQHandler(void) {/* USER CODE BEGIN UART7_IRQn 0 */if (UART7 huart7.Instance) // 判断是否是空闲中断{if (__HAL_UART_GET_FLAG(&huart7, UART_FLA…...

Jmeter系列之作用域、执行顺序

这一节主要解释元件作用域和执行顺序,以及整理之前说过的参数化的方式。 作用域 之前也留下了一个问题。怎么给不同的请求设置不同的Header?后续也透露了可以使用Sample Controller,结合元件的作用域来实现 在Jmeter中,元件的作…...

舜宇光学科技社招校招入职测评:商业推理测验真题汇总、答题要求、高分技巧

舜宇光学科技(集团)有限公司,成立于1984年,是全球领先的综合光学零件及产品制造商。2007年在香港联交所主板上市,股票代码2382.HK。公司专注于光学产品的设计、研发、生产及销售,产品广泛应用于手机、汽车、…...

C语言——构造(结构体)

指针——内存操作 我们对于内存的操作借助于 <string.h>这个库提供的内存操作函数。 内存填充 头文件: #include<string.h> 函数原型: void*memset(void *s,int c,size_t n); 函数功能&#xff1a; 填充s开始的堆内存空间前n个字节&#xff0c;使得每个字节值为c…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...