Spark大数据分析案例
目录
- 案例概述
- 环境搭建
- 1. Spark单机环境
- 2. Spark集群环境
- 数据集
- 数据预处理
- Spark作业编写
- 提交Spark作业
- 数据可视化
- 可能遇到的问题及解决方法
- 结论
案例概述
本案例将介绍如何在单机和集群环境下使用Apache Spark进行大数据分析,最终使用Python实现数据的可视化。我们将首先讲解Spark的安装与配置,然后展示如何在单机和集群环境中运行Spark。接下来,我们将使用Python编写Spark应用程序来分析一个公开的数据集。最后,我们将利用Python库如Matplotlib和Seaborn对数据进行可视化。
环境搭建
1. Spark单机环境
-
安装Java: Spark依赖于Java环境,因此首先需要安装Java SDK。
sudo apt-get update sudo apt-get install openjdk-8-jdk java -version -
下载Spark: 从Apache Spark官网下载Spark的二进制文件。
wget https://downloads.apache.org/spark/spark-3.4.0/spark-3.4.0-bin-hadoop3.tgz tar -xzvf spark-3.4.0-bin-hadoop3.tgz -
配置环境变量:
编辑
.bashrc文件:nano ~/.bashrc添加以下内容:
export SPARK_HOME=~/spark-3.4.0-bin-hadoop3 export PATH=$PATH:$SPARK_HOME/bin export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64应用配置:
source ~/.bashrc -
启动Spark:
启动Spark的交互式Shell(Scala和Python):
spark-shell # Scala Shell pyspark # Python Shell
2. Spark集群环境
-
安装配置: 在每个节点上按单机环境的步骤安装Java和Spark。
-
配置SSH免密登录: 在master节点生成SSH密钥并分发到所有节点。
ssh-keygen -t rsa ssh-copy-id node1 ssh-copy-id node2 -
配置Spark集群:
编辑
$SPARK_HOME/conf/spark-env.sh文件,添加以下配置:export SPARK_MASTER_HOST='master' export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64在
slaves文件中列出所有节点的主机名。 -
启动Spark集群:
启动Spark Master和Worker节点:
start-master.sh start-slaves.sh访问Spark Web UI,查看集群状态:
http://master:8080
数据集
我们将使用一个公开的股票市场数据集,该数据集包含历史股票价格和交易量数据。数据集可从Kaggle下载。下载后的数据将被上传到HDFS或本地文件系统中进行分析。
数据预处理
在分析之前,我们需要使用Python对数据进行预处理,将其转换为适合Spark处理的格式。使用pandas库读取和处理数据,然后保存为Parquet格式,以提高Spark的读取效率。
import pandas as pd# 读取数据
df = pd.read_csv('all_stocks_5yr.csv')# 数据清洗
df = df.dropna()# 转换日期格式
df['date'] = pd.to_datetime(df['date'])# 保存为Parquet文件
df.to_parquet('stocks_data.parquet')
Spark作业编写
使用Python编写一个Spark应用程序,分析股票价格的趋势。
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, year# 初始化SparkSession
spark = SparkSession.builder.appName("StockAnalysis").getOrCreate()# 读取Parquet格式的数据
df = spark.read.parquet('stocks_data.parquet')# 计算每年的平均股票价格
df_avg = df.withColumn('year', year(col('date'))) \.groupBy('year', 'Name') \.agg(avg('close').alias('avg_close'))# 展示结果
df_avg.show()# 保存结果为CSV文件
df_avg.write.csv('stocks_avg_price.csv', header=True)spark.stop()
提交Spark作业
将预处理后的数据上传到HDFS或使用本地文件系统,然后提交Spark作业。
spark-submit --master yarn --deploy-mode cluster stock_analysis.py
数据可视化
Spark作业完成后,我们将结果导出到本地,并使用Python进行可视化展示。
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns# 读取Spark作业的结果
df_result = pd.read_csv('stocks_avg_price.csv')# 可视化每年每只股票的平均收盘价
plt.figure(figsize=(14, 7))
sns.lineplot(x='year', y='avg_close', hue='Name', data=df_result)
plt.title('Average Stock Prices by Year')
plt.show()
可能遇到的问题及解决方法
-
数据导入失败: 在大数据集上传到HDFS或本地文件系统时可能会出现网络超时或连接中断问题。建议将数据切分为较小块上传,并验证数据的完整性。
-
内存不足: 在处理大数据集时,Spark作业可能会因内存不足而失败。可以通过调整Spark的内存配置参数如
--executor-memory和--driver-memory来解决。 -
集群节点失效: Spark集群中的某个节点可能会因硬件故障或网络问题而失效。Spark具有容错机制,会自动重新分配任务,但仍需定期监控节点状态。
-
数据倾斜问题: 在处理具有高度倾斜的数据集时,某些任务可能会耗尽资源。可以通过增加分区数或自定义分区器来均衡负载。
-
版本兼容性问题: 确保Spark集群上安装的Python版本与开发环境一致,以避免因版本不兼容导致的错误。
结论
通过本案例,读者可以学习如何在单机和集群环境下使用Apache Spark进行大数据分析,并通过数据可视化得出有价值的见解。本案例还指出了在实际项目中可能遇到的问题及其解决方案,为应对大数据分析中的挑战提供了实用指导。
相关文章:
Spark大数据分析案例
目录 案例概述环境搭建1. Spark单机环境2. Spark集群环境 数据集数据预处理 Spark作业编写提交Spark作业 数据可视化可能遇到的问题及解决方法结论 案例概述 本案例将介绍如何在单机和集群环境下使用Apache Spark进行大数据分析,最终使用Python实现数据的可视化。我…...
【数据结构】关于Java对象比较,以及优先级队列的大小堆创建你了解多少???
前言: 🌟🌟Hello家人们,这期讲解对象的比较,以及优先级队列堆,希望你能帮到屏幕前的你。 🌈上期博客在这里:http://t.csdnimg.cn/MSex7 🌈感兴趣的小伙伴看一看小编主页&…...
HQChart使用教程101-创建内置键盘精灵
HQChart使用教程101-创建内置键盘精灵 键盘精灵步骤1. 创建键盘精灵实例2. 设置事件回调3. 初始化键盘精灵4. 设置码表数据5. 监听"keydown","mousedown" 交流QQ群HQChart代码地址键盘精灵源码 完整实例 键盘精灵 键盘精灵是一种便捷操作软件的功能工具&a…...
nginx基础配置
1. https配置 首先在nginx.conf中配置https 2. 重定向 rewrite ^/(.*)$ https://www.sxl1.com/$1 permanent;3. 自动索引 autoindex on;4. 缓存 Nginx expire缓存配置: 缓存可以降低网站带宽,加速用户访问location ~ .*\.(gif|jpg|png)$ {expires 365d;roo…...
怿星科技与您相约——2024 Testing Expo
汽车测试及质量监控博览会(中国)Testing Expo China-Automotive 怿星科技展位路线 届时欢迎莅临2057号展台!...
mac本地搭建docker+k8s步骤
概览: * kubectl安装 * minikube安装 * dashboard安装 主机配置: * mac M2 (arm架构) 服务及版本概览: 服务名称版本 kubectl v1.29.2 Kubernetes v1.30.0 kicbase v0.0.44 dashboard v2.7.0 docker 26.…...
JS DOM、点击事件
JS DOM 加载事件onload js代码执行的时候,需要html&css的支持 onload在页面加载完之后执行 dom:用JS对html标签进行增删改查 元素节点获取 var name document.getElementById("userName"); var inputs document.getElementsByTagNam…...
长短期记忆网络(LSTM)预测模型及其Python和MATLAB实现
## 一、背景 长短期记忆(Long Short-Term Memory, LSTM)网络是由 Sepp Hochreiter 和 Jrgen Schmidhuber 在 1997 年提出的一种特殊的循环神经网络(RNN)结构。LSTM 旨在解决传统 RNN 在处理长序列数据时常见的梯度消失和梯度爆炸…...
C语言——操作符详解
目录 1.操作符的分类 2.原码、反码和补码 3.移位操作符 3.1 左移操作符 3.2 右移操作符 4.位操作符 4.1 按位与& 4.2 按位或| 4.3 按位异或^ 编辑 4.4 按位取反~ 4.5 应用题 4.5.1 题目:不能创建临时变量,实现两个整数的交换 4.5.2 …...
【Linux】内核全量函数添加日志打印摸索
1、操作系统在空载时要把函数调用次数非常多的注释掉,这里打印时不能带进程名称,高执行概率函数不同进程执行到的概率也很高,不然操作业务会增加卡死的概率; 2、卡死一般是调用次数太多导致,会卡住操作系统十多秒&…...
24/8/17算法笔记 CQL算法离线学习
离线学习:不需要更新数据 CQL(Conservative Q-Learning)算法是一种用于离线强化学习的方法,它通过学习一个保守的Q函数来解决标准离线RL方法可能由于数据集和学习到的策略之间的分布偏移而导致的过高估计问题 。CQL算法的核心思想…...
C++第十一弹 -- STL之List的剖析与使用
文章索引 前言1. list的介绍2 list的使用2.1 list的构造函数2.2 iterator的使用2.3 list capacity2.4 list element access2.5 list modifiers 3. list的迭代器失效4. list与vector的对比总结 前言 本篇我们旨在探讨对于STL中list的使用, 下一篇我们将会对list进行底层剖析以及…...
物流快递外卖管理平台系统-计算机毕设Java|springboot实战项目
🍊作者:计算机毕设匠心工作室 🍊简介:毕业后就一直专业从事计算机软件程序开发,至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。 擅长:按照需求定制化开发项目…...
开源BaaS 平台介绍
以下是几款常见的开源后端平台,它们提供了用户管理、权限验证、文件存储、API 管理等类似的后端功能。 1. Parse Server 简介: Parse 是一个非常流行的开源后端服务平台,它最初由 Facebook 开发,后来开源。它支持用户管理、数据存储、文件存…...
分享一个基于python爬虫的“今日头条”新闻数据分析可视化系统(源码、调试、LW、开题、PPT)
💕💕作者:计算机源码社 💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流&…...
QT自定义信号槽
1.自定义信号槽 使用connect()可以让我们连接系统提供的信号和槽,同时也可以自定义信号槽。 例如以学生和老师构建类同时当老师触发信号下课同学收到信号执行“吃饭”这一动作代码示例 #include "SignalAndSlot.h" //Teacher Student 总框架…...
one-shot 序列图像红外小目标分割
one-shot 序列图像红外小目标分割 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 代码还未开源 GitHub - D-IceIce/one-shot-IRSTS few-shot:利用少量标注样本进行学习 one-shot: 属于few-shot的特殊情况,只用一个样本进行学习 zero-shot&am…...
JavaScript 单线程防阻塞的原理
JavaScript 是一种单线程语言,这意味着它一次只能执行一个任务。这种设计可能会导致一些问题,比如当遇到耗时的操作时,整个程序可能会被阻塞。为了解决这个问题,JavaScript 使用了事件循环和回调函数的机制,实现了非阻塞式的异步操作。 事件循环 JavaScript 有一个事件队列,用…...
Shell脚本发送邮件的详细步骤与配置方法?
Shell脚本发送邮件的进阶技巧?怎么配置Shell脚本发信? 使用Shell脚本发送邮件是一种高效的自动化手段,特别是在需要定期发送报告、通知或警告信息时。AokSend将详细介绍Shell脚本发送邮件的步骤与配置方法,帮助您更好地掌握这一技…...
如何把Phalcon 集成到PhpStorm里面
一 背景 按照上一篇文章里面写的Phalcon 创建项目过程中的一些坑, 最终我们在终端可以基于Phalcon命令创建对应的开发项目。但在这个过程中,存在一个问题:那就是写代码的时候,发现Phalcon对应的依赖提示都没有,如下: 从上面这个截图来看,就能发现,Phalcon的啥…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
