苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测
苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测
目录
- 苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览





基本介绍
1.Matlab实现NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:大学生课程设计、期末大作业和毕业设计。

程序设计
- 完整程序和数据获取方式私信博主回复NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测(Matlab)。
%% 清空环境变量
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
warning off % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
enddisp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')%% 初始化参数
popsize = 4; % 初始种群规模
maxgen = 10; % 最大进化代数
fobj = @(x)objectiveFunction(x,f_,vp_train,vt_train,vp_test,T_test,ps_output);%% 优化算法参数设置
lb = [0.0001 10 20 0.00001]; % 参数的下限。分别是学习率,BiGRU的神经元个数,滤波器个数, 正则化参数
ub = [0.01 100 120 0.005]; % 参数的上限
dim = length(lb);%数量[Best_score,Best_pos,SSA_curve]=SSA(popsize,maxgen,lb,ub,dim,fobj);
setdemorandstream(pi);%% 将优化目标参数传进来的值 转换为需要的超参数
learning_rate = Best_pos(1); % 学习率
NumNeurons = round(Best_pos(2)); % BiGRU神经元个数
numFilters = round(Best_pos(3)); % 滤波器个数
L2Regularization = Best_pos(4); % 正则化参数
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章:
苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测
苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测 目录 苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实…...
关于WebSocket必知必会的知识点
什么是WebSocket WebSocket是一种网络传输协议,可以在单个TCP连接上进行全双工通信,位于OSI模型的应用层。 WebSocket使得客户端和服务器之间的数据交换变得更加简单,服务器可以主动向客户端发送消息。在WebSocket API中,浏览器和…...
Go 1.19.4 Sort排序进阶-Day 12
1. 结构体(切片)排序 结构体返回的是切片。 之前学习了sort.Ints()和sort.Strings(),使用这两个sort库下面的方法,可以对int和strings进行排序。 那如果我要对自定义类型进行排序,怎么办,sort库没提供&…...
python-求距离(赛氪OJ)
[题目描述] 给你一个 1−>n 的排列,现在有一次机会可以交换两个数的位置,求交换后最小值和最大值之间的最大距离是多少?输入格式: 输入共两行。 第一行一个数 n 。 第二行 n 个数表示这个排列。输出格式: 输出一行一…...
《第二十一章 传感器与定位 - 传感器应用》
《第二十一章 传感器与定位 - 传感器应用》 在当今的移动应用开发中,充分利用设备的传感器能够为用户带来更加智能和便捷的体验。本章将重点探讨加速度传感器、方向传感器和光线传感器的应用。 一、传感器应用的重要性 随着智能手机和移动设备的普及,传感…...
Windows系统命令
Windows系统命令 Windows 系统中的命令行工具是指令式编程语言,可以用来执行各种任务、管理文件和目录、监控系统状态等。下面是一个 Windows 命令应用实例: 1. 文件操作 cd:用于改变当前目录。例如,cd Documents 将当前目录更…...
C语言函数递归
前言与概述 本文章将通过多个代码并赋予图示,详细讲解C语言函数递归的定义和函数递归的运算过程。 函数递归定义 程序调用自身的编程技巧称为递归。递归作为一种算法在程序设计语言中广泛应用。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法。它…...
【python数据分析11】——Pandas统计分析(分组聚合进行组内计算)
分组聚合进行组内计算 前言1、groupby方法拆分数据2、agg方法聚合数据3、apply方法聚合数据4、transform方法聚合数据5 小案例5.1 按照时间对菜品订单详情表进行拆分5.2 使用agg方法计算5.3 使用apply方法统计单日菜品销售数目 前言 依据某个或者几个字段对数据集进行分组&…...
高性能web服务器
目录 一、简介 (一)nginx-高性能的web服务端 (二)用户访问体验 二、I/O模型 (一)概念 (二)网络I/O模型 (三)阻塞型 I/O 模型 (四…...
微服务案例搭建
目录 一、案例搭建 1.数据库表 2.服务模块 二、具体代码实现如下: (1) 首先是大体框架为: (2)父模块中的pom文件配置 (3)shop_common模块,这个模块里面只需要配置pom.xml,与实体…...
SAP负库存
业务示例 在系统中,对于一些物料而言,不能立即将收到的交货输入为收货。如果要使发货无论如何都是可以过帐的,则需要允许这些物料的负库存。 负库存 发货数量大于预订数量时,过帐该发货就会出现负库存。如果由于组织原因&#…...
集团数字化转型方案(三)
集团数字化转型方案通过系统整合人工智能(AI)、大数据、云计算和物联网(IoT)技术,建立了一个全面智能化的业务管理平台,涵盖从业务流程自动化、数据驱动决策支持,到客户体验优化和供应链管理的各…...
ESP32智能设备:蓝牙音箱、AI语音助手、环境监测与调节以及智能控制,基于BLE与MQTT技术(代码详解)
本文将介绍如何实现一个功能丰富的ESP32项目,集成蓝牙音箱、AI语音助手、智能设备控制器、环境监测与调节等功能。通过本项目,您将学习到硬件设计、嵌入式编程、蓝牙技术、音频处理、人工智能与语音识别、物联网平台、数据分析及用户界面构建等技术。 一…...
web渗透测试 学习导图
web渗透学习路线 前言 一、web渗透测试是什么? Web渗透测试分为白盒测试和黑盒测试,白盒测试是指目标网站的源码等信息的情况下对其渗透,相当于代码分析审计。而黑盒测试则是在对该网站系统信息不知情的情况下渗透,以下所说的Web…...
WordPress禁止后台自定义功能
wordpress后台可以彻底禁止主题的自定义菜单功能,下面这段代码添加到functions.php文件中,后台外观菜单中的”自定义”就会消失不见了。 add_filter(map_meta_cap, function($caps, $cap){if($cap customize){return [do_not_allow];}return $caps; },…...
(六)Flink 窗口计算
窗口(Window)是处理无界流的关键所在。窗口可以将数据流装入大小有限的“桶”中,再对每个“桶”加以处理。 目录 时间概念 窗口类型 窗口划分 窗口的生命周期 Window Assigners 窗口函数 Triggers 窗口触发器 Evictor 数据剔除器 Allowed Lateness 旁路输出 时间…...
SQL 布尔盲注 (injection 第六关)
简介 SQL注入(SQL Injection)是一种常见的网络攻击方式,通过向SQL查询中插入恶意的SQL代码,攻击者可以操控数据库,SQL注入是一种代码注入攻击,其中攻击者将恶意的SQL代码插入到应用程序的输入字段中&am…...
OpenAI 重回巅峰:ChatGPT-4O 最新模型超越谷歌 Gemini 1.5,多项测试夺冠!
谷歌上周发布的Gemini 1.5 Pro模型,在LMSYS办的聊天机器人竞技场Chatbot Arena中获得第一名。但是,OpenAI迅速反应,推出了最新的chatgpt-4o-latest模型,重新夺回了冠军头衔。 chatgpt-4o-latest模型简介 OpenAI最近推出了名为gpt-…...
软件工程(2)面向对象方法:Booch方法与开发实例
Booch方法(Booch Method)是由Grady Booch提出的一种面向对象的软件开发方法。它是一种系统分析与设计的框架,主要用于设计和建模面向对象的系统。Booch方法特别关注对象模型的构建,以及类、对象和它们之间的关系。以下是Booch方法…...
高阶面试-concurrentHashMap的整理
算不上死磕,里面太痛苦了,现在很多位移等操作还看不懂,只是先理清大致思路,面试用 concurrentHashMap的实现原理 为啥会用到?并发安全。之前都用的hashtable实现线程安全的map,但是太过笨重,不…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
