Midjourney进阶-反推与优化提示词(案例实操)

Midjourney中提示词是关键,掌握提示词的技巧直接决定了生成作品的质量。
当你看到一张不错的图片,想要让Midjourney生成类似的图片,却不知道如何描述画面撰写提示词,这时候Midjourney的/describe指令,正是帮助你推理以及优化提示词的一个强大工具。
这篇内容将详细讲解这个功能的使用方法、适用场景,并通过具体的案例演示如何利用它来提升你的作画效果。
1-Describe指令是什么?

/describe指令是Midjourney中的一个反向工程指令,允许用户上传一张图片或上传图片链接,系统会自动生成四个不同的文本提示词。
这些提示词不仅描述了图片的内容,还可能提供额外的创意词汇或风格建议,帮助用户更好地理解AI如何解析图像,并为后续创作提供灵感。
2-Describe指令的用途
/describe指令的主要用途是为用户推导出图像的提示词以及提供提示词创作的灵感。
它特别适合对提示词撰写比较薄弱以及那些希望改进提示词表达、探索新风格或者学习Midjourney如何解析图像的用户。
通过这个指令,你不仅可以看到AI对图像的解释,还能发现一些未曾想到的风格或元素,从而丰富你的创作过程。
3-如何使用Describe指令(操作)
使用/describe指令的步骤非常简单:
3.1-选择一张图片:
先选定你想要分析的图片,可以是你之前在Midjourney生成的图像,也可以是你从其他地方找到的图片。
3.2-上传图片:
在Midjourney的聊天窗口中输入/describe指令,然后上传图片。

3.3-查看生成的提示词:
系统会自动生成四个文本提示词。这些提示词通常会包含图像的颜色、风格、主题等信息,有时还会加上一些你可能没有注意到的细节。

4-案例分析
案例1:反推提示词
假设你看到了一张喜欢的图片,想生成类似的图片,但不知道怎么撰写提示词,就可以通过describe来反推提示词。

你输入/describe指令后,并上传那张图片
系统会生成四个提示词,其中一个可能会提到类似“futuristic neon city with vibrant colors and a moody atmosphere”的描述。这些提示词不仅准确反映了图片的风格,还可能加入了一些新元素,如“moody atmosphere”,为你提供了更多创作上的选择。

案例2:发现隐藏元素
另一种情况是,当你上传一张可能包含细节较多的图片(如“带有浸水感的牛仔”)。

系统生成的提示词可能会提到一些你之前忽略的细节,比如“photographically detailed portraitures”或“water and land fusion”。这些细节描述不仅丰富了你的提示词库,还可能为你提供新的创作思路。

5-使用Describe指令的注意事项
5.1-灵感来源而非复制工具:
需要注意的是,/describe指令并不是为了完全复制你上传的图像,它虽然能帮你反推图像的提示词,而是提供与之相关的创意提示词。但生成的提示词可能与原图有所不同,更多的是为你提供灵感和创作方向。
5.2-选择合适的提示词:
生成的四个提示词可能风格各异,建议根据你当前的创作需求选择最合适的一个进行进一步的创作尝试。
5.3-不断实践与优化:
使用/describe指令只是创作过程的一部分,通过多次尝试和调整,你会逐渐摸索出一套适合自己的提示词组合策略。
6-总结
Midjourney的/describe指令是一个极具价值的工具,特别适合那些希望提升自己提示词技巧的用户。通过反向推理,你可以更加深入地理解AI对图像的解析方式,发现新的创作灵感,并最终生成更加高质量的作品。这个过程不仅能帮助你学习,还能大大扩展你的创意空间。

相关文章:
Midjourney进阶-反推与优化提示词(案例实操)
Midjourney中提示词是关键,掌握提示词的技巧直接决定了生成作品的质量。 当你看到一张不错的图片,想要让Midjourney生成类似的图片,却不知道如何描述画面撰写提示词,这时候Midjourney的/describe指令,正是帮助你推…...
大公报发表欧科云链署名文章:发行港元稳定币,建Web3.0新生态
欧科云链研究院资深研究员蒋照生近日与香港科技大学副校长兼香港Web3.0协会首席科学顾问汪扬、零壹智库创始人兼CEO柏亮,在大公报发布联合署名文章 ——《Web3.0洞察 / 发行港元稳定币,建Web3.0新生态》,引发市场广泛讨论。 文章就香港稳定币…...
Mybatis的一些常用知识点(面试)
什么是MyBatis? Mybatis 是⼀个半 ORM(对象关系映射)框架,它内部封装了 JDBC。 它让开发者在开发时只需要关注 SQL 语句本身,不需要花费精⼒去处理加载驱动、创建连接等繁杂的过程 缺点: SQL语句的编写⼯作量较⼤ SQ…...
stm32—ADC
1. 什么是ADC 生活中我们经常会用到ADC这种器件,比如说,当我们在使用手机进行语音通信时,ADC器件会将我们的声信号转换为电信号 (模拟信号 ---> 数字信号) 模拟信号: 模拟信号是指用连续变化的物理量表示的信息,其信…...
【微信小程序】吐槽生态之云开发服务端能力不足
回想起来,笔者开发小程序的经历也有4年多了,以前因为技术积累接触不到比较深层次的东西,也不理解软件生态这个概念,现在开发小程序的过程中,越来越觉得很多生态微信的进步空间很大。 问题引入 比如说,在迭…...
AnimateDiff论文解读
GitHub - Kosinkadink/ComfyUI-AnimateDiff-Evolved: Improved AnimateDiff for ComfyUI and Advanced Sampling Support 视频编码 定义: 首先,将视频数据转换为一系列的潜变量代码(latent codes)。这是通过一个预训练的自动编码器(auto-encoder)来完成的。操作: …...
C/C++控制台贪吃蛇游戏的实现
🚀欢迎互三👉:程序猿方梓燚 💎💎 🚀关注博主,后期持续更新系列文章 🚀如果有错误感谢请大家批评指出,及时修改 🚀感谢大家点赞👍收藏⭐评论✍ 一、…...
Linux 升级安装 Weblogic-补丁!
版本: RedHat 6.5 Weblogic 10.3.6.0 ----------------------------------------------------------------- 1.查看当前 weblogic 补丁版本 cd /weblogic/utils/bsu/ ./bsu.sh -prod_dir/weblogic/wlserver_10.3/ -statusapplied -verbose -view 2.卸载旧补丁…...
苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测
苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测 目录 苍鹰来啦!快来看呀!NGO-BiTCN-BiGRU-Attention北方苍鹰算法优化多重双向深度学习回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实…...
关于WebSocket必知必会的知识点
什么是WebSocket WebSocket是一种网络传输协议,可以在单个TCP连接上进行全双工通信,位于OSI模型的应用层。 WebSocket使得客户端和服务器之间的数据交换变得更加简单,服务器可以主动向客户端发送消息。在WebSocket API中,浏览器和…...
Go 1.19.4 Sort排序进阶-Day 12
1. 结构体(切片)排序 结构体返回的是切片。 之前学习了sort.Ints()和sort.Strings(),使用这两个sort库下面的方法,可以对int和strings进行排序。 那如果我要对自定义类型进行排序,怎么办,sort库没提供&…...
python-求距离(赛氪OJ)
[题目描述] 给你一个 1−>n 的排列,现在有一次机会可以交换两个数的位置,求交换后最小值和最大值之间的最大距离是多少?输入格式: 输入共两行。 第一行一个数 n 。 第二行 n 个数表示这个排列。输出格式: 输出一行一…...
《第二十一章 传感器与定位 - 传感器应用》
《第二十一章 传感器与定位 - 传感器应用》 在当今的移动应用开发中,充分利用设备的传感器能够为用户带来更加智能和便捷的体验。本章将重点探讨加速度传感器、方向传感器和光线传感器的应用。 一、传感器应用的重要性 随着智能手机和移动设备的普及,传感…...
Windows系统命令
Windows系统命令 Windows 系统中的命令行工具是指令式编程语言,可以用来执行各种任务、管理文件和目录、监控系统状态等。下面是一个 Windows 命令应用实例: 1. 文件操作 cd:用于改变当前目录。例如,cd Documents 将当前目录更…...
C语言函数递归
前言与概述 本文章将通过多个代码并赋予图示,详细讲解C语言函数递归的定义和函数递归的运算过程。 函数递归定义 程序调用自身的编程技巧称为递归。递归作为一种算法在程序设计语言中广泛应用。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法。它…...
【python数据分析11】——Pandas统计分析(分组聚合进行组内计算)
分组聚合进行组内计算 前言1、groupby方法拆分数据2、agg方法聚合数据3、apply方法聚合数据4、transform方法聚合数据5 小案例5.1 按照时间对菜品订单详情表进行拆分5.2 使用agg方法计算5.3 使用apply方法统计单日菜品销售数目 前言 依据某个或者几个字段对数据集进行分组&…...
高性能web服务器
目录 一、简介 (一)nginx-高性能的web服务端 (二)用户访问体验 二、I/O模型 (一)概念 (二)网络I/O模型 (三)阻塞型 I/O 模型 (四…...
微服务案例搭建
目录 一、案例搭建 1.数据库表 2.服务模块 二、具体代码实现如下: (1) 首先是大体框架为: (2)父模块中的pom文件配置 (3)shop_common模块,这个模块里面只需要配置pom.xml,与实体…...
SAP负库存
业务示例 在系统中,对于一些物料而言,不能立即将收到的交货输入为收货。如果要使发货无论如何都是可以过帐的,则需要允许这些物料的负库存。 负库存 发货数量大于预订数量时,过帐该发货就会出现负库存。如果由于组织原因&#…...
集团数字化转型方案(三)
集团数字化转型方案通过系统整合人工智能(AI)、大数据、云计算和物联网(IoT)技术,建立了一个全面智能化的业务管理平台,涵盖从业务流程自动化、数据驱动决策支持,到客户体验优化和供应链管理的各…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
