算法力扣刷题记录 八十四【46.全排列】
前言
回溯章节第11篇。记录 八十四【46.全排列】
回溯学习过:组合问题、切割问题、子集问题。
本文是排列问题。
一、题目阅读
给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]
提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums 中的所有整数 互不相同
二、尝试实现
2.1分析题目,确定方法
- 记录 六十三【回溯章节开篇】讲过回溯解决哪些问题。题目直白指出求排列,解决排列用回溯。
- 确定回溯之后,需要构造一个树形结构。按照树形结构方便实现递归。以示例1为例:

- 搜集结构都是在叶子节点,所以有终止条件:和子集问题不一样;
- 可选元素不是在已选元素之后继续选择,和组合不一样。
- 发现:一个排序需要用到集合所有的元素,需要记录这个元素有没有被选过。所以用used数组表示当前已有的排列中有没有该元素。
2.2回溯思路
- 确定返回值:用全局变量 vector<vector< int>> result; vector< int> temp; 搜集结果。所以返回值是void。
- 确定参数:
- 需要输入集合:const vector< int>& nums;
- 需要used数组:vector< bool>& used。表示当前已有的排列中有没有该元素。
- 确定终止条件:当temp.size() == nums.size(),temp中已经是一个排列了。就该return。
- 确定逻辑:
- for循环,从0开始,到nums.size()结束;
- 如果used == false,说明排列中还没有这个元素,那么可以放入temp并且used改成true;否则,continue;
- 放入temp之后,递到下一层;
- 回溯:把元素pop并且used = false。
代码实现【回溯】
class Solution {
public:vector<vector<int>> result;vector<int> temp;void backtracking(const vector<int>& nums,vector<bool>& used){if(temp.size() == nums.size()){result.push_back(temp);return;}for(int i = 0;i < nums.size();i++){if(used[i] == false){temp.push_back(nums[i]);used[i] = true;backtracking(nums,used);temp.pop_back();used[i] = false;}}return;}vector<vector<int>> permute(vector<int>& nums) {result.clear();temp.clear();vector<bool> used(nums.size(),false);//有没有被选到backtracking(nums,used);return result;}
};
三、参考学习
【46.全排列】 参考学习链接
- 参考给的思路和方法与尝试实现中一致。
- 分析时间复杂度:递归次数 * 每次递归的时间复杂度。
- 递归次数:第一层for循环可选n个元素,是排列的第一个元素;第二层for循环可选n-1个元素,是排列的第二个元素;第三层for循环可选n-2个元素,是排列的第三个元素……直到最后一个元素。所以一个集合有 n! 个排列。需要递归 n! 次。
- 每次递归的时间复杂度:操作单元是处理——递归——回溯完整过程。O(1)。
- 所以时间复杂度是O(n!)。
- 空间复杂度:递归深度 * 每次递归的空间复杂度。递归深度:n,集合的大小;每次递归的空间复杂度是O(1),因为使用同一个used数组、result数组、temp数组空间,没有新开辟别的大小。所以空间复杂度是O(n)。
总结

(欢迎指正,转载标明出处)
相关文章:
算法力扣刷题记录 八十四【46.全排列】
前言 回溯章节第11篇。记录 八十四【46.全排列】 回溯学习过:组合问题、切割问题、子集问题。 本文是排列问题。 一、题目阅读 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入&…...
[C++进阶]map和set
一、关联式容器 STL中的部分容器,比如:vector、list、deque、forward_list(C11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。 那什么是关联式容器?它与序列式容器…...
ios机型下input输入框输入时拉高
问题 部分iphone或者ipad机型下,网页中使用input输入框时,调起ios软键盘输入时,input输入框被拉高,导致布局错位或者变化。 <input type"text" name"phonenum" >直观表现 注:在android机型…...
nacos 使用 docker 单机部署连接 MySQL 数据库并开启鉴权
文章目录 本地部署的配置启用鉴权(未验证) docker部署的配置修改docker 镜像源启用鉴权,必须添加如下环境变量如何生成鉴权的密钥 完整环境变量docker启动命令 本地部署的配置 文件结构 application.properties #配置文件 mysql-schema.sql …...
Opencv-C++笔记 (20) : 距离变换与分水岭的图像分割
文章目录 一、图片分割分水岭算法理解分水岭算法过程 二、距离变换与分水岭距离变换常见算法有两种分水岭变换常见的算法步骤 主要函数c代码四、结果展示 一、图片分割 图像分割(Image Segmentation)是图像处理最重要的处理手段之一 图像分割的目标是将图像中像素根据一定的规则…...
【流媒体】RTMPDump—Download(接收流媒体信息)
目录 RTMP协议相关: 【流媒体】RTMP协议概述 【流媒体】RTMP协议的数据格式 【流媒体】RTMP协议的消息类型 【流媒体】RTMPDump—主流程简单分析 【流媒体】RTMPDump—RTMP_Connect函数(握手、网络连接) 【流媒体】RTMPDump—RTMP_ConnectStr…...
Pytorch cat()与stack()函数详解
torch.cat() cat为concatenate的缩写,意思为拼接,torch.cat()函数一般是用于张量拼接使用的 cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int 0, *, out: Optional[Tensor] None) -> Tensor: 可以看到cat()函数的参数…...
A. X(质因数分解+并查集)
题意:给定一个序列,求的方案数,其中,,i和j属于两个不同集合内。 解法:考虑怎样必须将某几个数放进一个集合里。如果数列中全是1,那么每个数都是独立的,也就是可以随便拿出这之中的数…...
自动化测试中如何应对网页弹窗的挑战!
在自动化测试中,网页弹窗的出现常常成为测试流程中的一个难点。无论是警告框、确认框、提示框,还是更复杂的模态对话框,都可能中断测试脚本的正常执行,导致测试结果的不确定性。本文将探讨几种有效的方法来应对网页弹窗的挑战&…...
Redission
一、Redis常见客户端 Jedis:简单,和命令最相似, API最丰富,多线程,不安全 SpringDataRedis: RedisTemplate,默认线程安全,底层基于Netty(异步支持),用于一…...
负载均衡详解
概述 负载均衡建立在现有的网络结构之上,提供了廉价、有效、透明的方式来扩展网络设备和服务器的带宽,增加了吞吐量,加强了网络数据的处理能力,提高了网络的灵活性和可用性。项目中常用的负载均衡有四层负载均衡和七层负载均衡。…...
Swift与UIKit:构建卓越用户界面的艺术
标题:Swift与UIKit:构建卓越用户界面的艺术 在iOS应用开发的世界中,UIKit是构建用户界面的基石。自从Swift语言问世以来,它与UIKit的结合就为开发者提供了一个强大而直观的工具集,用于创建直观、响应迅速的应用程序。…...
Spring 中ClassPathXmlApplicationContext
ClassPathXmlApplicationContext 是 Spring Framework 的一个重要类,位于 org.springframework.context.support 包中。它是 ApplicationContext 接口的实现,专门用于从类路径下加载 XML 配置文件。通过这个类,你可以在 Spring 应用程序中设置…...
Springboot邮件发送:如何配置SMTP服务器?
Springboot邮件发送集成方法?如何提升邮件发送性能? 对于使用Springboot的开发者来说,配置SMTP服务器来实现邮件发送并不是一件复杂的事情。AokSend将详细介绍如何通过配置SMTP服务器来实现Springboot邮件发送。 Springboot邮件发送&#x…...
二叉树--堆
二叉树-堆 一、堆的概念及结构1.1 堆的概念与结构1.2 堆的性质 二、堆的实现三、堆的应用1、堆排序 一、堆的概念及结构 1.1 堆的概念与结构 堆就是完全二叉树以顺序存储方式存储于一个数组中。 然后每一个根都大于它的左孩子和右孩子的堆,我们叫做大堆ÿ…...
【K8s】专题十二(2):Kubernetes 存储之 PersistentVolume
本文内容均来自个人笔记并重新梳理,如有错误欢迎指正! 如果对您有帮助,烦请点赞、关注、转发、订阅专栏! 专栏订阅入口 Linux 专栏 | Docker 专栏 | Kubernetes 专栏 往期精彩文章 【Docker】(全网首发)Kyl…...
python3多个图片合成一个pdf文件,生产使用验证过
简单的示例代码,展示如何将多个图片合成为一个 PDF 文件。 步骤 1: 安装依赖库 首先,确保你已经安装了 Pillow 和 reportlab 库: pip install Pillow reportlab步骤 2: 编写代码 下面是一个 Python 脚本,它将指定目录中的所有图片文件合成一个 PDF 文件: from PIL im…...
Stable Diffusion赋能“黑神话”——助力悟空走进AI奇幻世界
《黑神话:悟空》是由游戏科学公司制作的以中国神话为背景的动作角色扮演游戏,将于2024年8月20日发售。玩家将扮演一位“天命人”,为了探寻昔日传说的真相,踏上一条充满危险与惊奇的西游之路。 同时,我们还可以借助AI绘…...
微信小程序登陆
一 问题引入 我们之前的登陆都是:网页http传来请求,我们java来做这个请求的校验。 但是如果微信小程序登陆,就要用到相关的api来实现。 二 快速入门 1 引入依赖 官方依赖,在里面找合适的,去设置版本号。由于我这…...
SQL - 存储过程
假设你在开发一个应用,应用有一个数据库,你要在哪里写SQL语句?你不会在你的应用代码里写语句,它会让你的应用代码很混乱且难以维护。具体在哪里呢?在存储过程中或函数中。存储过程是一组为了完成特定功能的SQL语句集合…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...
深度解析云存储:概念、架构与应用实践
在数据爆炸式增长的时代,传统本地存储因容量限制、管理复杂等问题,已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性,成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理,云存储正重塑数据存储与…...
