Pytorch cat()与stack()函数详解
torch.cat()
cat为concatenate的缩写,意思为拼接,torch.cat()函数一般是用于张量拼接使用的
cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor:
可以看到cat()函数的参数,常用的参数为,第一个参数:可以选择元组或者列表,内部包含需要拼接的张量,需要按照顺序排列,第二个参数为dim,用于指定需要拼接的维度
import torch
import numpy as npdata1 = torch.randint(0, 10, [2, 3, 4])
data2 = torch.randint(0, 10, [2, 3, 4])print(data1)
print(data2)
print("-" * 20)print(torch.cat([data1, data2], dim=0))
print(torch.cat([data1, data2], dim=1))
print(torch.cat([data1, data2], dim=2))
# tensor([[[9, 4, 0, 0],
# [3, 3, 7, 6],
# [6, 1, 0, 8]],
#
# [[9, 1, 1, 2],
# [1, 0, 6, 4],
# [7, 9, 3, 9]]])
# tensor([[[3, 2, 6, 3],
# [8, 3, 1, 1],
# [0, 9, 2, 5]],
#
# [[2, 6, 7, 5],
# [9, 1, 0, 1],
# [0, 6, 4, 4]]])
# --------------------
# tensor([[[9, 4, 0, 0],
# [3, 3, 7, 6],
# [6, 1, 0, 8]],
#
# [[9, 1, 1, 2],
# [1, 0, 6, 4],
# [7, 9, 3, 9]],
#
# [[3, 2, 6, 3],
# [8, 3, 1, 1],
# [0, 9, 2, 5]],
#
# [[2, 6, 7, 5],
# [9, 1, 0, 1],
# [0, 6, 4, 4]]])
# tensor([[[9, 4, 0, 0],
# [3, 3, 7, 6],
# [6, 1, 0, 8],
# [3, 2, 6, 3],
# [8, 3, 1, 1],
# [0, 9, 2, 5]],
#
# [[9, 1, 1, 2],
# [1, 0, 6, 4],
# [7, 9, 3, 9],
# [2, 6, 7, 5],
# [9, 1, 0, 1],
# [0, 6, 4, 4]]])
# tensor([[[9, 4, 0, 0, 3, 2, 6, 3],
# [3, 3, 7, 6, 8, 3, 1, 1],
# [6, 1, 0, 8, 0, 9, 2, 5]],
#
# [[9, 1, 1, 2, 2, 6, 7, 5],
# [1, 0, 6, 4, 9, 1, 0, 1],
# [7, 9, 3, 9, 0, 6, 4, 4]]])
上述代码演示了拼接维度为0,1,2的时候的结果,可以看出cat()并不会影响张量的维度,如上述的三维张量拼接,若dim为0则按块(后两位张量组成的二维张量)进行拼接,若dim为1则按行拼接,若dim为2则按列拼接
torch.stack()
stack为堆叠、栈的意思
stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor:
可以看到stack()和cat()的用法几乎一致,都是用于堆叠张量组成的列表或元组,以及堆叠的维度dim
import torch
import numpy as npdata1 = torch.randint(0, 10, [2, 3, 4])
data2 = torch.randint(0, 10, [2, 3, 4])print(data1)
print(data2)
print("-" * 20)data3 = torch.stack([data1, data2], dim=0)
data4 = torch.stack([data1, data2], dim=1)
data5 = torch.stack([data1, data2], dim=2)
data6 = torch.stack([data1, data2], dim=3)
print(data3.shape)
print(data3)
print(data4.shape)
print(data4)
print(data5.shape)
print(data5)
print(data6.shape)
print(data6)# tensor([[[1, 6, 6, 1],
# [3, 1, 8, 2],
# [0, 4, 7, 3]],
#
# [[4, 7, 5, 6],
# [5, 4, 0, 2],
# [8, 0, 3, 0]]])
# tensor([[[5, 2, 7, 2],
# [7, 4, 2, 0],
# [8, 5, 5, 9]],
#
# [[7, 1, 5, 6],
# [3, 5, 4, 7],
# [1, 0, 8, 8]]])
# --------------------
# torch.Size([2, 2, 3, 4])
# tensor([[[[1, 6, 6, 1],
# [3, 1, 8, 2],
# [0, 4, 7, 3]],
#
# [[4, 7, 5, 6],
# [5, 4, 0, 2],
# [8, 0, 3, 0]]],
#
#
# [[[5, 2, 7, 2],
# [7, 4, 2, 0],
# [8, 5, 5, 9]],
#
# [[7, 1, 5, 6],
# [3, 5, 4, 7],
# [1, 0, 8, 8]]]])
# torch.Size([2, 2, 3, 4])
# tensor([[[[1, 6, 6, 1],
# [3, 1, 8, 2],
# [0, 4, 7, 3]],
#
# [[5, 2, 7, 2],
# [7, 4, 2, 0],
# [8, 5, 5, 9]]],
#
#
# [[[4, 7, 5, 6],
# [5, 4, 0, 2],
# [8, 0, 3, 0]],
#
# [[7, 1, 5, 6],
# [3, 5, 4, 7],
# [1, 0, 8, 8]]]])
# torch.Size([2, 3, 2, 4])
# tensor([[[[1, 6, 6, 1],
# [5, 2, 7, 2]],
#
# [[3, 1, 8, 2],
# [7, 4, 2, 0]],
#
# [[0, 4, 7, 3],
# [8, 5, 5, 9]]],
#
#
# [[[4, 7, 5, 6],
# [7, 1, 5, 6]],
#
# [[5, 4, 0, 2],
# [3, 5, 4, 7]],
#
# [[8, 0, 3, 0],
# [1, 0, 8, 8]]]])
# torch.Size([2, 3, 4, 2])
# tensor([[[[1, 5],
# [6, 2],
# [6, 7],
# [1, 2]],
#
# [[3, 7],
# [1, 4],
# [8, 2],
# [2, 0]],
#
# [[0, 8],
# [4, 5],
# [7, 5],
# [3, 9]]],
#
#
# [[[4, 7],
# [7, 1],
# [5, 5],
# [6, 6]],
#
# [[5, 3],
# [4, 5],
# [0, 4],
# [2, 7]],
#
# [[8, 1],
# [0, 0],
# [3, 8],
# [0, 8]]]])
可以看到dim设置为几,就会按第几个维度进行堆叠拼接,dim为0则是整体堆叠后升维,dim为1则是按第二个维度也就是后两维张量为一个整体进行两个张量对应堆叠拼接,dim为2为按后两维中的行进行堆叠拼接,dim为3也就是按两个张量的单个值进行对应堆叠拼接
stack()随着维度增加,理解会较为复杂,具体可见代码和结果演示
注意,cat()和stack()中的dim参数也可以使用负索引,即从-1开始进行维度索引
相关文章:
Pytorch cat()与stack()函数详解
torch.cat() cat为concatenate的缩写,意思为拼接,torch.cat()函数一般是用于张量拼接使用的 cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int 0, *, out: Optional[Tensor] None) -> Tensor: 可以看到cat()函数的参数…...
A. X(质因数分解+并查集)
题意:给定一个序列,求的方案数,其中,,i和j属于两个不同集合内。 解法:考虑怎样必须将某几个数放进一个集合里。如果数列中全是1,那么每个数都是独立的,也就是可以随便拿出这之中的数…...
自动化测试中如何应对网页弹窗的挑战!
在自动化测试中,网页弹窗的出现常常成为测试流程中的一个难点。无论是警告框、确认框、提示框,还是更复杂的模态对话框,都可能中断测试脚本的正常执行,导致测试结果的不确定性。本文将探讨几种有效的方法来应对网页弹窗的挑战&…...
Redission
一、Redis常见客户端 Jedis:简单,和命令最相似, API最丰富,多线程,不安全 SpringDataRedis: RedisTemplate,默认线程安全,底层基于Netty(异步支持),用于一…...
负载均衡详解
概述 负载均衡建立在现有的网络结构之上,提供了廉价、有效、透明的方式来扩展网络设备和服务器的带宽,增加了吞吐量,加强了网络数据的处理能力,提高了网络的灵活性和可用性。项目中常用的负载均衡有四层负载均衡和七层负载均衡。…...
Swift与UIKit:构建卓越用户界面的艺术
标题:Swift与UIKit:构建卓越用户界面的艺术 在iOS应用开发的世界中,UIKit是构建用户界面的基石。自从Swift语言问世以来,它与UIKit的结合就为开发者提供了一个强大而直观的工具集,用于创建直观、响应迅速的应用程序。…...
Spring 中ClassPathXmlApplicationContext
ClassPathXmlApplicationContext 是 Spring Framework 的一个重要类,位于 org.springframework.context.support 包中。它是 ApplicationContext 接口的实现,专门用于从类路径下加载 XML 配置文件。通过这个类,你可以在 Spring 应用程序中设置…...
Springboot邮件发送:如何配置SMTP服务器?
Springboot邮件发送集成方法?如何提升邮件发送性能? 对于使用Springboot的开发者来说,配置SMTP服务器来实现邮件发送并不是一件复杂的事情。AokSend将详细介绍如何通过配置SMTP服务器来实现Springboot邮件发送。 Springboot邮件发送&#x…...
二叉树--堆
二叉树-堆 一、堆的概念及结构1.1 堆的概念与结构1.2 堆的性质 二、堆的实现三、堆的应用1、堆排序 一、堆的概念及结构 1.1 堆的概念与结构 堆就是完全二叉树以顺序存储方式存储于一个数组中。 然后每一个根都大于它的左孩子和右孩子的堆,我们叫做大堆ÿ…...
【K8s】专题十二(2):Kubernetes 存储之 PersistentVolume
本文内容均来自个人笔记并重新梳理,如有错误欢迎指正! 如果对您有帮助,烦请点赞、关注、转发、订阅专栏! 专栏订阅入口 Linux 专栏 | Docker 专栏 | Kubernetes 专栏 往期精彩文章 【Docker】(全网首发)Kyl…...
python3多个图片合成一个pdf文件,生产使用验证过
简单的示例代码,展示如何将多个图片合成为一个 PDF 文件。 步骤 1: 安装依赖库 首先,确保你已经安装了 Pillow 和 reportlab 库: pip install Pillow reportlab步骤 2: 编写代码 下面是一个 Python 脚本,它将指定目录中的所有图片文件合成一个 PDF 文件: from PIL im…...
Stable Diffusion赋能“黑神话”——助力悟空走进AI奇幻世界
《黑神话:悟空》是由游戏科学公司制作的以中国神话为背景的动作角色扮演游戏,将于2024年8月20日发售。玩家将扮演一位“天命人”,为了探寻昔日传说的真相,踏上一条充满危险与惊奇的西游之路。 同时,我们还可以借助AI绘…...
微信小程序登陆
一 问题引入 我们之前的登陆都是:网页http传来请求,我们java来做这个请求的校验。 但是如果微信小程序登陆,就要用到相关的api来实现。 二 快速入门 1 引入依赖 官方依赖,在里面找合适的,去设置版本号。由于我这…...
SQL - 存储过程
假设你在开发一个应用,应用有一个数据库,你要在哪里写SQL语句?你不会在你的应用代码里写语句,它会让你的应用代码很混乱且难以维护。具体在哪里呢?在存储过程中或函数中。存储过程是一组为了完成特定功能的SQL语句集合…...
RabbitMQ环境搭建
2.5.RabbitMQ 安装 a.docker方式安装: 1.在我的docker学习笔记中具有详细的安装过程 b.rpm包方式安装: 1.MQ下载地址2.这里是提前下载好后上传安装包到服务器得opt目录下: 3.安装MQ需要先有Erlang语言环境,安装文件的Linux命令…...
多视点抓取(Multi-View Grasping)
目录 前言 一、在机器人抓取检测领域里,多视点抓取是什么意思 二、以GG-CNN为例,GG-CNN是怎么结合多个视点进行抓取预测的 前言 多视点抓取(Multi-View Grasping)是机器人抓取和检测领域的一个重要概念,它涉及到机器…...
【人工智能】对智元机器人发布的远征A1所应用的AI前沿技术进行详细分析,基于此整理一份学习教程。
智元机器人在其新品发布中应用了多项AI前沿技术。我们可以从以下几个方面来分析和整理这些技术,并基于此整理一份学习教程: 一、智元机器人应用的关键AI技术 自然语言处理 (NLP) 语音识别: 利用先进的语音识别技术,如OpenAI的Whisper&#x…...
影刀RPA--如何获取网页当页数据?
(1)点击数据抓取-选择需要获取数据的地方-会弹出是否是获取整个表格(当前页面) (2)点击“是”:则直接获取整个表格数据-点击完成即可 (3)点击“否”:如果你想…...
Bean对象生命周期流程图
Bean生命周期流程图:https://www.processon.com/view/link/5f8588c87d9c0806f27358c1 Spring扫描底层流程:https://www.processon.com/view/link/61370ee60e3e7412ecd95d43...
24/8/17算法笔记 策略梯度reinforce算法
import gym from matplotlib import pyplot as plt %matplotlib inline#创建环境 env gym.make(CartPole-v0) env.reset()#打印游戏 def show():plt.imshow(env.render(mode rgb_array))plt.show() show()定义网络模型 import torch #定义模型 model torch.nn.Sequential(t…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
【若依】框架项目部署笔记
参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作: 压缩包下载:http://download.redis.io/releases 1. 上传压缩包,并进入压缩包所在目录,解压到目标…...
数据库正常,但后端收不到数据原因及解决
从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...
高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...
