24/8/17算法笔记 策略梯度reinforce算法

import gym
from matplotlib import pyplot as plt
%matplotlib inline#创建环境
env = gym.make('CartPole-v0')
env.reset()#打印游戏
def show():plt.imshow(env.render(mode = 'rgb_array'))plt.show()
show()
定义网络模型
import torch
#定义模型
model = torch.nn.Sequential(torch.nn.Linear(4,128),torch.nn.ReLU(),torch.nn.Linear(128,2),torch.nn.Softmax(dim=1),
)
model(torch.randn(2,4))
定义动作函数
import random
#得到一个动作
def get_action(state):state = torch.FloatTensor(state).reshape(1,4)#[1,4]->[1,2]prob = model(state)#根据概率选择一个动作action = random.choice(range(2),weights = prob[0].tolist(),k=1)[0]
#这行代码从 0 到 1(包含)的整数范围内选择一个元素作为动作,选择的概率由 prob[0] 列表中元素的值决定。return action
获取一局游戏数据
def get_data():states = []rewards = []actions = []#初始化游戏state = env.reset()#玩到游戏结束为止over = Falsewhile not over:#根据当前状态得到一个动作action = get_action(state)#执行动作,得到反馈next_state,reward,over,_ = env.step(action)#记录数据样本states.append(state)rewards.append(reward)actions.append(action)#更新游戏状态,开始下一个动作state = next.statereturn states,rewards,actions
测试函数
from IPython import displaydef test(play):#初始化游戏state = env.reset()#记录反馈值的和,这个值越大越好reward_sum=0#玩到游戏结束为止over = False while not over:#根据当前状态得到一个动作action = get_action(state)#执行动作,得到反馈state,reward,over,_ = env.state(action)reward_sum += reward#打印动画if play and random.random()<0.2:#跳帧display.clear_output(wait=True) #用于清除 Jupyter Notebook 单元格的输出。show()return reward_sum
训练函数
def train():optimizer = torch.optim.Adam(model.parameters(),lr = 1e-3)#玩N局游戏,得到数据states,rewards,actions = get_data()optimizer.zero_grad()#反馈的和,初始化为0reward_sum = 0#从最后一步算起for i in reversed(range(len(states))):#反馈的和,从最后一步的反馈开始计算#每往前一步,>>和<<都衰减0.02,然后再加上当前的反馈reward_sum*=0.98reward_sum+=rewards[i]#重新计算对应动作的概率state = torch.FloatTensor(states[i]).reshape(1,4)#[1,4]->[1,2]prob = model(state)#[1,2]->scalapron = pron[0,actions[i]]#根据求导公式,符号取反是因为这里是求loss,所以优化方向相反loss =-prob.log()*reward_sum#累积梯度loss.backward(retain_graph=True)optimizer.step()if epoch%100==0:test_result = sum([test(play=False) for _ in range(10)])/10print(epoch,test_result)
相关文章:
24/8/17算法笔记 策略梯度reinforce算法
import gym from matplotlib import pyplot as plt %matplotlib inline#创建环境 env gym.make(CartPole-v0) env.reset()#打印游戏 def show():plt.imshow(env.render(mode rgb_array))plt.show() show()定义网络模型 import torch #定义模型 model torch.nn.Sequential(t…...
【Linux学习】Linux开发工具——vim
🔥个人主页: Forcible Bug Maker 🔥专栏:Linux学习 目录 🌈前言🔥vim的基本概念🔥vim的基本操作🔥vim命令模式的命令集🔥简单vim配置⭐一键配置美观的vim安装方法卸载方…...
【2025校招】4399 NLP算法工程师笔试题
目录 1. 第一题2. 第二题3. 第三题 ⏰ 时间:2024/08/19 🔄 输入输出:ACM格式 ⏳ 时长:2h 本试卷分为单选,自我评价题,编程题 单选和自我评价这里不再介绍,4399的编程题一如既往地抽象ÿ…...
数据库原理--关系1
目录 一、表的基本构成要素 二、域(Domain) 三、笛卡尔积 四、关系模式 五、关系模式与关系 六、关系的特性 一、表的基本构成要素 表又被叫做关系,在数据库当中,我们可以把行叫做元组和记录,而列在数据库当中通常被我们叫做字段或者…...
【人工智能】AI工程化是将人工智能技术转化为实际应用、创造实际价值的关键步骤
AI工程化是将人工智能技术转化为实际应用、创造实际价值的关键步骤。以下是对AI工程化的详细介绍: 一、概念与定义 AI工程化是使用数据处理、预训练模型、机器学习流水线等技术开发AI软件的过程,旨在帮助企业更高效地利用AI创造价值。它是软件工程在AI…...
《C语言实现各种排序算法》
文章目录 一、排序1、排序的各种方式分类 二、插入排序1、直接插入排序2、希尔排序3、希尔排序时间复杂度分析 三、选择排序1、直接选择排序2、堆排序 四、交换排序1、冒泡排序2、快速排序3、快速排序hoare找基准值4、快排挖坑法找基准值5、前后指针法6、快速排序非递归实现 五…...
【888题竞赛篇】第五题,2023ICPC澳门-传送(Teleportation)
这里写自定义目录标题 更多精彩内容256题算法特训课,帮你斩获大厂60W年薪offer 原题2023ICPC澳门真题传送B站动画详解 问题分析思路分析图的构建最短路径算法具体步骤 算法实现Dijkstra 算法图的构建 代码详解标准代码程序C代码Java代码Python代码Javascript代码 复…...
javascript写一个页码器-SAAS本地化及未来之窗行业应用跨平台架构
一代码 接引入 <script type"text/javascript" src"CyberWin_APP_Page.js" alt"未来之窗页码"></script>function 未来之窗页面触发器(页码){console.log("当前用户新"页码);}CyberWin_Page.set_callback(未来之窗页面触发…...
微信小程序如何自定义一个组件
微信小程序支持组件化开发,这有助于我们复用代码,提高开发效率。下面我将给出一个简单的微信小程序组件化示例,包括一个自定义组件的创建和使用。 1. 创建自定义组件 首先,在项目的 components 目录下创建一个新的组件文件夹&am…...
【数学建模备赛】Ep05:斯皮尔曼spearman相关系数
文章目录 一、前言🚀🚀🚀二、斯皮尔曼spearman相关系数:☀️☀️☀️1. 回顾皮尔逊相关系数2. 斯皮尔曼spearman相关系数3. 斯皮尔曼相关系数公式4. 另外一种斯皮尔曼相关系数定义5. matlab的用法5. matlab的用法 三、对斯皮尔曼相…...
MATLAB进行神经网络建模的案例
下面是一个使用MATLAB进行神经网络建模的案例,该案例涉及使用神经网络来逼近一个未知系统的输入输出关系。这个案例与您提到的学习资料中的实例类似,但我会简化并解释每个步骤。 案例背景 假设我们有一组输入和输出数据,我们希望通过建立一…...
每天一个数据分析题(四百八十九)- 主成分分析与因子分析
关于主成分分析和因子分析的区别,下列描述正确的是( ) A. 主成分分析是一种无监督学习算法,而因子分析是一种有监督学习算法 B. 主成分分析是一种线性变换方法,而因子分析是一种非线性变换方法 C. 主成分分析的结果…...
Java RPC、Go RPC、Node RPC、Python RPC 之间的互相调用
Java RPC、Go RPC、Node RPC、Python RPC 之间的互相调用是完全可以实现的,但需要满足一些条件和依赖于特定的工具和协议。以下是如何实现不同语言之间的RPC互相调用的详细解释: 1. 使用通用协议和标准:gRPC gRPC 是一个高性能、开源的RPC框…...
国外代理IP选择:IP池的大小有何影响
代理IP是跨境人不可或缺的工具,广泛应用于广告验证、数据获取和账号矩阵管理等方面。而在选择代理IP时,IP池的大小往往是一个至关重要的考量因素。本文将深入解析IP池大小对代理IP选择的影响,帮助大家更好地理解这一关键决策点。 一、IP池的…...
手机谷歌浏览器怎么用
谷歌浏览器不仅在PC端受欢迎,在移动端也是广泛应用的。为了帮助大家更好的理解和使用手机谷歌浏览器,本文将详细介绍如何使用手机谷歌浏览器,对这款浏览器感到陌生的话就快快学起来吧。(本文由https://chrome.cmrrs.com/站点的作者…...
Button窗口部件
# 2. Button窗口部件 # 简单说明: # Button(按钮)部件是一个标准的Tkinter窗口部件,用来实现各种按钮。按钮能够包含文本或图象, # 并且你能够将按钮与一个Python函数或方法相关联。当这个按钮被按下时,Tki…...
PCIe学习笔记(25)
数据完整性 PCI Express的基本数据可靠性机制包含在数据链路层(data Link Layer)中,它使用32位的LCRC (CRC)码逐链路检测TLP中的错误,并采用逐链路重传机制进行错误恢复。TLP是一个数据和事务控制单元,由位于PCI Express域“边缘”的数据源(…...
8.20
上午 1、使用ansible安装并启动ftp服务 [root1 ~]# vim /etc/ansible/hosts s0 ansible_ssh_host10.0.0.12 ansible_ssh_port22 ansible_ssh_userroot ansible_ssh_pass1 s1 ansible_ssh_host10.0.0.13 ansible_ssh_port22 ansible_ssh_userroot ansible_ssh_pass1 s2 ansi…...
centos7.9系统安装talebook个人书库
1.简介: talebook —— 一个基于Calibre的简单的个人图书管理系统,支持在线阅读。 2.环境准备: #使用阿里源 wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.repos.d/docker-ce.repo #安装docker yu…...
ES高级查询Query DSL查询详解、term术语级别查询、全文检索、highlight高亮
文章目录 ES高级查询Query DSLmatch_all返回源数据_source返回指定条数size分页查询from&size指定字段排序sort 术语级别查询term query术语查询terms query多术语查询range query范围查询exists queryids queryprefix query前缀查询wildcard query通配符查询fuzzy query模…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
