单例模式详细
文章目录
- 单例模式
- 介绍
- 八种方式
- 1、饿汉式(静态常量)
- 2、饿汉式(静态代码块)
- 3、懒汉式(线程不安全)
- 4、懒汉式(线程安全,同步方法)
- 5、懒汉式(线程不安全,同步代码块)
- 6、双重检查
- 7、静态内部类
- 8、枚举
- JDK 源码分析
- 注意事项和细节说明
- 小结
单例模式
介绍
所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)
比如 Hibernate 的 SessionFactory,它充当数据存储源的代理,并负责创建 Session 对象。SessionFactory 并不是轻量级的,一般情况下,一个项目通常只需要一个 SessionFactory 就够,这是就会使用到单例模式
八种方式
- 1)饿汉式(静态常量)
- 2)饿汉式(静态代码块)
- 3)懒汉式(线程不安全)
- 4)懒汉式(线程安全,同步方法)
- 5)懒汉式(线程安全,同步代码块)
- 6)双重检查
- 7)静态内部类
- 8)枚举
1、饿汉式(静态常量)
- 1)构造器私有化(防止外部 new)
- 2)类的内部创建对象
- 3)向外暴露一个静态的公共方法 getInstance
public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部创建对象private static final Singleton instance = new Singleton();// 3、向外暴露一个静态的公共方法public static Singleton getInstance() {return instance;}
}
优缺点
- 1)优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题
- 2)缺点:在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费
- 3)这种方式基于 classloder 机制避免了多线程的同步问题。不过,instance 在类装载时就实例化,在单例模式中大多数都是调用getlnstance 方法,但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 就没有达到 Lazy loading 的效果
- 4)结论:这种单例模式可用,可能造成内存浪费
2、饿汉式(静态代码块)
- 1)构造器私有化
- 2)类的内部声明对象
- 3)在静态代码块中创建对象
- 4)向外暴露一个静态的公共方法
public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象private static Singleton instance;// 3、在静态代码块中创建对象static {instance = new Singleton();}// 4、向外暴露一个静态的公共方法public static Singleton getInstance() {return instance;}
}
优缺点
- 1)这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。
- 2)结论:这种单例模式可用,但是可能造成内存浪费
3、懒汉式(线程不安全)
- 1)构造器私有化
- 2)类的内部创建对象
- 3)向外暴露一个静态的公共方法,当使用到该方法时,才去创建 instance
// 1、构造器私有化
private Singleton() {
}// 2、类的内部声明对象
private static Singleton instance;// 3、向外暴露一个静态的公共方法,当使用到该方法时,才去创建 instance
public static Singleton getInstance() {if (instance == null) {instance = new Singleton();}return instance;
}
优缺点
- 1)起到了 Lazy Loading 的效果,但是只能在单线程下使用
- 2)如果在多线程下,一个线程进入了判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例
- 3)结论:在实际开发中,不要使用这种方式
4、懒汉式(线程安全,同步方法)
- 1)构造器私有化
- 2)类的内部创建对象
- 3)向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题
public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象private static Singleton instance;// 3、向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题public static synchronized Singleton getInstance() {if (instance == null) {instance = new Singleton();}return instance;}
}
优缺点
- 1)解决了线程不安全问题
- 2)效率太低了,每个线程在想获得类的实例时候,执行
getlnstance()
方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return
就行了。方法进行同步效率太低 - 3)结论:在实际开发中,不推荐使用这种方式
5、懒汉式(线程不安全,同步代码块)
- 1)构造器私有化
- 2)类的内部创建对象
- 3)向外暴露一个静态的公共方法,加入同步处理的代码块
public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象private static Singleton instance;// 3、向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题public static Singleton getInstance() {if (instance == null) {synchronized (Singleton.class) {instance = new Singleton();}}return instance;}
}
优缺点
- 1)这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低,改为同步产生实例化的的代码块
- 2)但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例
- 3)结论:在实际开发中,不能使用这种方式
6、双重检查
- 1)构造器私有化
- 2)类的内部创建对象,同时用
volatile
关键字修饰修饰 - 3)向外暴露一个静态的公共方法,加入同步处理的代码块,并进行双重判断,解决线程安全问题
public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象,同时用`volatile`关键字修饰修饰private static volatile Singleton instance;// 3、向外暴露一个静态的公共方法,加入同步处理的代码块,并进行双重判断,解决线程安全问题public static Singleton getInstance() {if (instance == null) {synchronized (Singleton.class) {if (instance == null) {instance = new Singleton();}}}return instance;}
}
优缺点
- 1)Double-Check 概念是多线程开发中常使用到的,我们进行了两次检查,这样就可以保证线程安全了
- 2)这样实例化代码只用执行一次,后面再次访问时直接 return 实例化对象,也避免的反复进行方法同步
- 3)线程安全;延迟加载;效率较高
- 4)结论:在实际开发中,推荐使用这种单例设计模式
7、静态内部类
- 1)构造器私有化
- 2)定义一个静态内部类,内部定义当前类的静态属性
- 3)向外暴露一个静态的公共方法
public class Singleton {// 1、构造器私有化private Singleton() {}// 2、定义一个静态内部类,内部定义当前类的静态属性private static class SingletonInstance {private static final Singleton instance = new Singleton();}// 3、向外暴露一个静态的公共方法public static Singleton getInstance() {return SingletonInstance.instance;}
}
优缺点
- 1)这种方式采用了类装载的机制,来保证初始化实例时只有一个线程
- 2)静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用
getlnstance
方法,才会装载Singletonlnstance 类,从而完成 Singleton 的实例化 - 3)类的静态属性只会在第一次加载类的时候初始化,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的
- 4)优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高
- 5)结论:推荐使用
8、枚举
public enum Singleton {INSTANCE;public void sayHello() {System.out.println("Hello World");}
}
优缺点
- 1)这借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象
- 2)这种方式是 Effective Java 作者 Josh Bloch 提倡的方式
- 3)结论:推荐使用
JDK 源码分析
JDK中 java.lang.Runtime 就是经典的单例模式
注意事项和细节说明
- 1)单例模式保证了系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能
- 2)当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new
- 3)单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多但又经常用到的对象(即:重量级对象)、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)
小结
虽然上述提到的概念中,将双重检查、静态内部类、枚举三种方式的单例模式单独列举出来说明,但个人觉得本质也可以归类到饿汉式和懒汉式中;另外,同步代码块虽然上述中归类到线程安全,实际上并不是线程安全的
总结如下
- |——饿汉式:静态常量、静态代码块、枚举(本质就是静态常量)
- |——懒汉式
- |——线程不安全:一次检查、同步代码块
- |——线程安全:同步方法、双重检查、静态内部类
分类 | 方式 | 懒加载 | 线程安全 | 效率 | 内存 | 推荐指数(仅供参考) |
---|---|---|---|---|---|---|
饿汉式 | 静态变量 | ❌ | ✔️ | ✔️ | ❌ | ⭐️⭐️ |
~ | 静态代码块 | ❌ | ✔️ | ✔️ | ❌ | ⭐️⭐️ |
~ | 枚举 | ❌ | ✔️ | ✔️ | ❌ | ⭐️⭐️⭐️ |
懒汉式 | 线程不安全 | ✔️ | ❌ | ✔️ | ✔️ | ⭐️ |
~ | 同步代码块 | ✔️ | ❌ | ✔️ | ✔️ | 不要使用 |
~ | 同步方法 | ✔️ | ✔️ | ❌ | ✔️ | ⭐️ |
~ | 双重检查 | ✔️ | ✔️ | ✔️ | ✔️ | ⭐️⭐️⭐️ |
~ | 静态内部类 | ✔️ | ✔️ | ✔️ | ✔️ | ⭐️⭐️⭐️ |
相关文章:

单例模式详细
文章目录 单例模式介绍八种方式1、饿汉式(静态常量)2、饿汉式(静态代码块)3、懒汉式(线程不安全)4、懒汉式(线程安全,同步方法)5、懒汉式(线程不安全…...

Unity3D 自定义窗口
Unity3D 自定义窗口的实现。 自定义窗口 Unity3D 可以通过编写代码,扩展编辑器的菜单栏和窗口。 简单的功能可以直接一个菜单按钮实现,复杂的功能就需要绘制一个窗口展示更多的信息。 编辑器扩展的脚本,需要放在 Editor 文件夹中。 菜单栏…...

dubbo:dubbo整合nacos实现服务注册中心、配置中心(二)
文章目录 0. 引言1. nacos简介及安装2. 注册中心实现3. 配置中心实现4. 源码5. 总结 0. 引言 之前我们讲解的是dubbozookeeper体系来实现微服务框架,但相对zookeeper很多企业在使用nacos, 并且nacos和dubbo都是阿里出品,所以具备一些天生的契合性&#…...
个人博客指路
Pudding 个人博客 比较懒,直接 github page 了,没国内代理加速。 欢迎大佬们,踩一踩 没做留言,觉得很鸡肋。有问题可以在本文底下评论、或者直接邮件...

【STM32 HAL】多串口printf重定向
【STM32 HAL】多串口printf重定向 前言单串口printf重定向原理实现CubeMX配置Keil5配置 多串口printf重定向 前言 在近期项目中,作者需要 STM32 同时向上位机和手机发送数据,传统的 printf 重定向只能输出到一个串口。本文介绍如何实现 printf 同时输出…...

帆软报表,达梦数据库驱动上传失败
1、按照正常操作新建数据库连接,上传准备好的达梦驱动时,提示如图一需要修改SystemConfig.driverUpload为true才可以。 2、FineDB存储了数据决策系统中除平台属性配置以外的所有信息。详情请参见: FineDB 数据库简介。 3、因此管理员可通过…...
CSS选择器的优先级是如何确定的?有哪些方法可以提高选择器的效率?
CSS选择器的优先级是如何确定的? CSS选择器的优先级决定了当多个选择器同时应用于一个元素时,哪个选择器将最终生效。CSS选择器的优先级由多个因素决定,主要包括以下几个方面: 特殊性(Specificity) 特殊性…...
【MySQL】基础入门(第二篇)
1.MySQL基本数据类型 数值类型 MySQL 支持所有标准 SQL 数值数据类型。 这些类型包括严格数值数据类型(INTEGER、SMALLINT、DECIMAL 和 NUMERIC),以及近似数值数据类型(FLOAT、REAL 和 DOUBLE PRECISION)。 关键字INT是INTEGER的同义词,关键字DEC是D…...

勇闯机器学习(第二关-数据集使用)
以下内容,皆为原创,重在无私分享高质量知识,制作实属不易,请点点关注。 好戏开场了~~~(这关涉及到了加载数据集的代码,下一关,教你们安装机器学习库) 一.数据集 这一关的目标 知道数据集被分为训练集和测…...

数据库学习(进阶)
数据库学习(进阶) Mysql结构:连接层:服务层(核心层):存储引擎层:系统文件层: 存储引擎(概述):存储引擎特点:InnoDB存储引擎:(为并发条…...
redis的数据结构——跳表(Skiplist)
跳表(Skiplist)是一种用于有序数据存储的高效数据结构,它在Redis中用于实现有序集合(Sorted Set,zset)的底层存储。当有序集合中的数据较多时,Redis会选择使用跳表来存储元素,以便在保持数据有序的同时提供高效的插入、删除、查找操作。 跳表的基本结构 跳表是一种多…...
Docker服务迁移
1 备份当前服务器上的 Docker 数据 1.1 停止 Docker 服务 为了确保数据一致性,在备份之前先停止 Docker 服务: sudo systemctl stop docker1.2 备份 Docker 数据 Docker 的数据通常位于 /var/lib/docker 目录。你可以使用 tar 命令将该目录压缩成一个…...

机器学习:逻辑回归实现下采样和过采样
1、概述 逻辑回归本身是一种分类算法,它并不涉及下采样或过采样操作。然而,在处理不平衡数据集时,这些技术经常被用来改善模型的性能。下采样和过采样是两种常用的处理不平衡数据集的方法。 2、下采样 1、概念 下采样是通过减少数量较多的类…...

React原理之Fiber双缓冲
前置文章: React原理之 React 整体架构解读React原理之整体渲染流程React原理之Fiber详解 -----读懂这一篇需要对 React 整体架构和渲染流程有大致的概念 😊----- 在前面的文章中,简单介绍了 Fiber 架构,也了解了 Fiber 节点的…...
机器学习笔记三-检测异常值
检测异常值是数据预处理中非常重要的一步,因为异常值可能会影响模型的训练效果,甚至导致错误的结论。以下是几种常见的检测异常值的方法: 1. 箱线图(Box Plot): 箱线图是一种简单的统计图形,可…...
如何评估Redis的性能
导语 Redis是一款高性能的内存数据库,被广泛用于缓存、持久化、消息队列等各种场景。为了确保Redis的高性能运行,评估Redis的性能是非常重要的。本文将介绍如何评估Redis的性能,并从问题解决的角度探讨如何优化Redis的性能。 1. 性能评估指…...

RabbitMQ发布订阅模式Publish/Subscribe详解
订阅模式Publish/Subscribe 基于API的方式1.使用AmqpAdmin定制消息发送组件2.消息发送者发送消息3.消息消费者接收消息 基于配置类的方式基于注解的方式总结 SpringBoot整合RabbitMQ中间件实现消息服务,主要围绕3个部分的工作进行展开:定制中间件、消息发…...
Android8.1源码下对APK进行系统签名
在Android8.1上面对APK进行Android系统源码环境下的签名,发现签名时出现如下错误: Exception in thread "main" java.lang.ExceptionInInitializerError at org.conscrypt.OpenSSLBIOInputStream.(OpenSSLBIOInputStream. at org.conscrypt.OpenSSLX509Certificat…...
2024年城市客运安全员考试题库及答案
一、单选题 376.根据《机动车运行安全技术条件》(GB7258---2017),每个应急出口应在其附近设有"应急出口"字样,字体高度应大于或等于()mm。 A.20 B.30 C.40 D.50 答案:C 377.根…...

全网最全面的Nginx内容(理论与实践相结合)
一、Web服务 1.1 web服务访问流程 1.2 Web服务 1.2.1 Web服务器分类 Web服务分为Apache和Nginx 1.2.2 Apache经典的Web服务器 1.2.2.1 Apache介绍 Apache HTTP Server(简称Apache)是Apache软件基金会的一个开放源码的网页服务器,可以…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...