机器学习笔记三-检测异常值
检测异常值是数据预处理中非常重要的一步,因为异常值可能会影响模型的训练效果,甚至导致错误的结论。以下是几种常见的检测异常值的方法:
1. 箱线图(Box Plot):
箱线图是一种简单的统计图形,可以直观地显示数据的分布情况及其离群点(异常值)。在箱线图中,异常值通常定义为超出“盒须”范围的点。
-
IQR(四分位距)方法:
- 箱线图的盒子代表数据的第一四分位数(Q1,25%)和第三四分位数(Q3,75%)。
- 四分位距(IQR)定义为 Q3 - Q1。
- 异常值通常定义为小于 Q1 - 1.5 * IQR 或大于 Q3 + 1.5 * IQR 的数据点。
import pandas as pd import numpy as np import matplotlib.pyplot as plt# 示例数据 data = np.random.randn(100) # 生成100个正态分布的数据点 data = np.append(data, [10, -10]) # 添加几个异常值# 绘制箱线图 plt.boxplot(data) plt.show()# 使用IQR方法检测异常值 Q1 = np.percentile(data, 25) Q3 = np.percentile(data, 75) IQR = Q3 - Q1lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQRoutliers = data[(data < lower_bound) | (data > upper_bound)] print("Detected Outliers:", outliers)
2. 标准差方法:
标准差法适用于数据呈正态分布的情况。异常值通常定义为超出平均值 μ \mu μ的3倍标准差 σ \sigma σ 的数据点。
-
公式:
- 异常值定义为小于 μ − 3 σ \mu - 3\sigma μ−3σ 或大于 μ + 3 σ \mu + 3\sigma μ+3σ 的数据点。
mean = np.mean(data) std_dev = np.std(data)lower_bound = mean - 3 * std_dev upper_bound = mean + 3 * std_devoutliers = data[(data < lower_bound) | (data > upper_bound)] print("Detected Outliers using Standard Deviation:", outliers)
3. Z-score 方法:
Z-score 表示数据点与均值的偏离程度,用于判断该数据点是否为异常值。Z-score 方法适用于数据呈正态分布的情况。
-
公式:
- Z-score = x − μ σ \frac{x - \mu}{\sigma} σx−μ
- 当 Z-score 的绝对值大于某个阈值(通常为 3)时,该数据点被认为是异常值。
from scipy import statsz_scores = stats.zscore(data) outliers = data[np.abs(z_scores) > 3] print("Detected Outliers using Z-score:", outliers)
4. 使用 Mahalanobis 距离:
Mahalanobis 距离考虑了数据的协方差结构,适合检测多变量数据中的异常值。
-
公式:
- Mahalanobis 距离 D 2 = ( x − μ ) T Σ − 1 ( x − μ ) D^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) D2=(x−μ)TΣ−1(x−μ)
- 异常值通常定义为 Mahalanobis 距离超过某个阈值的数据点。
from scipy.spatial import distance# 示例多维数据 data = np.random.randn(100, 2) mean = np.mean(data, axis=0) cov_matrix = np.cov(data, rowvar=False)mahalanobis_distances = [distance.mahalanobis(x, mean, np.linalg.inv(cov_matrix)) for x in data]threshold = np.percentile(mahalanobis_distances, 97.5) # 选择一个合适的阈值 outliers = data[np.array(mahalanobis_distances) > threshold] print("Detected Outliers using Mahalanobis Distance:", outliers)
5. 视觉化异常值检测:
通过绘制散点图、直方图等图表,可以直观地观察数据分布并识别可能的异常值。
6. 处理异常值的方法:
- 删除: 直接删除异常值,适用于异常值数量很少的情况。
- 替换: 使用均值、中位数或插值方法替换异常值。
- 模型化: 在一些情况下,异常值可能是数据的有效部分,可以通过重新建模来处理这些异常值。
总结:
不同的方法适用于不同类型的数据和异常值检测场景。在实际应用中,通常结合多种方法进行异常值检测,并根据业务需求和数据特点采取适当的处理策略。
相关文章:
机器学习笔记三-检测异常值
检测异常值是数据预处理中非常重要的一步,因为异常值可能会影响模型的训练效果,甚至导致错误的结论。以下是几种常见的检测异常值的方法: 1. 箱线图(Box Plot): 箱线图是一种简单的统计图形,可…...
如何评估Redis的性能
导语 Redis是一款高性能的内存数据库,被广泛用于缓存、持久化、消息队列等各种场景。为了确保Redis的高性能运行,评估Redis的性能是非常重要的。本文将介绍如何评估Redis的性能,并从问题解决的角度探讨如何优化Redis的性能。 1. 性能评估指…...

RabbitMQ发布订阅模式Publish/Subscribe详解
订阅模式Publish/Subscribe 基于API的方式1.使用AmqpAdmin定制消息发送组件2.消息发送者发送消息3.消息消费者接收消息 基于配置类的方式基于注解的方式总结 SpringBoot整合RabbitMQ中间件实现消息服务,主要围绕3个部分的工作进行展开:定制中间件、消息发…...
Android8.1源码下对APK进行系统签名
在Android8.1上面对APK进行Android系统源码环境下的签名,发现签名时出现如下错误: Exception in thread "main" java.lang.ExceptionInInitializerError at org.conscrypt.OpenSSLBIOInputStream.(OpenSSLBIOInputStream. at org.conscrypt.OpenSSLX509Certificat…...
2024年城市客运安全员考试题库及答案
一、单选题 376.根据《机动车运行安全技术条件》(GB7258---2017),每个应急出口应在其附近设有"应急出口"字样,字体高度应大于或等于()mm。 A.20 B.30 C.40 D.50 答案:C 377.根…...

全网最全面的Nginx内容(理论与实践相结合)
一、Web服务 1.1 web服务访问流程 1.2 Web服务 1.2.1 Web服务器分类 Web服务分为Apache和Nginx 1.2.2 Apache经典的Web服务器 1.2.2.1 Apache介绍 Apache HTTP Server(简称Apache)是Apache软件基金会的一个开放源码的网页服务器,可以…...
(七)Flink Watermark
Flink 的 Watermark 是用来标识数据流中的一个时间点。Watermark 的设计是为了解决乱序数据处理的问题,尤其是涉及到多个分区的 Kafka 消费者时。在 Watermark 的作用下,即使某些数据出现了延迟到达的情况,也不会导致整个处理流程的中断。此外,Watermark 还能防止过期的数据…...
springboot 上传文件失败:The temporary upload location
Caused by: java.io.IOException: The temporary upload location [/tmp/tomcat.379776875189163783.8081/work/Tomcat/localhost/jcys-core] is not valid 原因: Linux下会自动清除tmp目录下10天没有使用过的文件,SpringBoot启动的时候会在/tmp目录下生…...

UNiapp之微信小程序导出Excel
效果如下 参考小程序:日常记一记 ---账单页面 主要功能是根据筛选条件导出账单明细列表,实现该功能主要借助一个工具(excel.js),可在文章顶部下载或者一下网盘下载 https://pan.baidu.com/s/1RLisuG4_7FGD0Cnwewyabg?pwdpd2a 提取码: pd2a…...
fsadsadsad
adsadsafsada...

高效录制新选择:2024年Windows录屏软件
录屏能帮助我们捕捉屏幕上的精彩瞬间,作为老师可以用来录制课程,作为会议记录员可以用来录制远程会议。那么有什么软件是适合windows录屏的呢?这次我们一起来探讨一下吧。 1.福昕录屏大师 链接:www.foxitsoftware.cn/REC/ 这款软…...
Java技术面试(一面)
1、相面对象 1、面相对象语言/Java三大特性是什么? 引出 封装、继承和多态。 2、多态有哪些形式?多态使用过吗? 重载、重写,接口和抽象类的多个实现。考察工作经验、代码重构经验、习惯。 3、Java接口和抽象类有什么区别?你是如何选择使用的? 考察OOP的理解和工作…...
docker修改数据目录
新建docker数据目录 mkdir /data/docker-data停止docker服务 systemctl stop docker把docker数据迁移到新目录 cp -r /var/lib/docker/* /data/docker-data/修改docker配置 vi /etc/docker/daemon.json #添加data-root参数 {"data-root":"/data/docker-dat...
Appium学习
一、基础配置 import unittest from appium import webdriver from appium.options.android import UiAutomator2Options from appium.webdriver.common.appiumby import AppiumBy from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support …...

回顾 | 瑞云科技亮相ICIC2024,虚拟仿真实训云平台引关注
2024年8月7日,天津市虚拟仿真学会主办的第二十届智能计算国际会议(ICIC2024)——虚拟仿真技术交流平行会议暨天津市虚拟仿真学会2024年暑期技术交流会在天津盛大召开。本次大会汇聚来自全国的顶尖专家、学者和行业领袖,共同探讨虚…...

libLZMA库iOS18平台编译
1.下载xz源码: 使用autogen.sh生成configure文件 2.生成makefile rm -rf ./build/iOS && mkdir -p ./build/iOS && cd ./build/iOS && ../../configure --host=arm-apple-darwin64 --prefix=`pwd`/Frameworks/lzma CC="xcrun -sdk iphoneos cl…...
《AI办公类工具PPT系列之二——iSlide AI》
一.简介 官网:iSlide- 让PPT设计简单起来 | PPT模板下载平台 iSlide AI是一款基于人工智能技术的PPT制作工具,它可以帮助用户快速高效地创建演示文稿 二.功能介绍 1. AI一键生成PPT 文档导入与解析:用户可以直接上传本地文档(如Word、Markdown、思维导图等),iSlide A…...

C语言基础(六)
一维数组: C语言中的数组是一种基本的数据结构,用于在计算机内存中连续存储相同类型的数据。 数组中的每个元素可以通过索引(或下标)来访问,索引通常是从0开始的。 数组的大小在声明时确定,并且之后不能改…...

什么是词向量?如何得到词向量?Embedding 快速解读
我第一次接触 Embedding 是在 Word2Vec 时期,那时候还没有 Transformer 和 BERT 。Embedding 给我的印象是,可以将词映射成一个数值向量,而且语义相近的词,在向量空间上具有相似的位置。 有了 Embedding ,就可以对词进…...

AI视频创作应用
重磅推荐专栏: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...