机器学习:逻辑回归处理手写数字的识别
1、获取数据, 图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分,划分出训练集和测试集。
import numpy as np
import pandas as pd
import cv2
img=cv2.imread("digits.png")#读取文件
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#变成灰度图
#切分数据
x=np.array([np.hsplit(i,100) for i in np.vsplit(gray,50)])
train=x[:,:50]
test=x[:,50:100]
2、每个数据的像素点为20*20,将其全部变成一列1*400格式,转换成数值特征
train_new=train.reshape(-1,400).astype(np.float32)
test_new=test.reshape(-1,400).astype(np.float32)
3、总共有2500行特征对应着2500个标签,从0到9每个数字有250个
k=np.arange(10)
train_labels=np.repeat(k,250)[:,np.newaxis].ravel()
test_labels=np.repeat(k,250)[:,np.newaxis].ravel()
4、导入逻辑回归库,采用交叉验证的方法找到最佳C值
#导入逻辑回归和交叉验证库
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
scores=[]
# 设置C的值进行交叉验证,找到最佳C
c_param_range=[0.01,0.1,1,10,100]
for i in c_param_range:lr = LogisticRegression(C=i, penalty='l2', solver='lbfgs', max_iter=10000)score = cross_val_score(lr, train_new, train_labels, cv=10, scoring='recall_macro')score_mean = sum(score) / len(score)scores.append(score_mean)
# 选择使得平均分数最高的C值
best_c = c_param_range[np.argmax(scores)]
lr = LogisticRegression(C=best_c, penalty='l2', max_iter=10000)
#使用最佳C值初始化逻辑回归模型并训练
lr.fit(train_new, train_labels)
5、使用训练好的模型对测试集进行预测
from sklearn import metrics
train_predicted=lr.predict(test_new)
print(metrics.classification_report(test_labels,train_predicted))
6、打印的分类报告
7、读取手写数字图像,并进行预测
p1=cv2.imread("p1.png")
gray_p1=cv2.cvtColor(p1,cv2.COLOR_BGR2GRAY)
tess=np.array(gray_p1)
tess_new=tess.reshape(-1,400).astype(np.float32)
# 使用训练好的模型进行预测
predicted_shouxie=lr.predict(tess_new)
print(predicted_shouxie)
8、书写预测结果
完整代码
import numpy as np
import pandas as pd
import cv2
img=cv2.imread("digits.png")#读取文件
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#变成灰度图
#切分数据
x=np.array([np.hsplit(i,100) for i in np.vsplit(gray,50)])
train=x[:,:50]
test=x[:,50:100]
train_new=train.reshape(-1,400).astype(np.float32)
test_new=test.reshape(-1,400).astype(np.float32)
k=np.arange(10)
train_labels=np.repeat(k,250)[:,np.newaxis].ravel()
test_labels=np.repeat(k,250)[:,np.newaxis].ravel()#导入逻辑回归和交叉验证库
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
scores=[]
# 设置C的值进行交叉验证,找到最佳C
c_param_range=[0.01,0.1,1,10,100]
for i in c_param_range:lr = LogisticRegression(C=i, penalty='l2', solver='lbfgs', max_iter=10000)score = cross_val_score(lr, train_new, train_labels, cv=10, scoring='recall_macro')score_mean = sum(score) / len(score)scores.append(score_mean)
# 选择使得平均分数最高的C值
best_c = c_param_range[np.argmax(scores)]
lr = LogisticRegression(C=best_c, penalty='l2', max_iter=10000)
lr.fit(train_new, train_labels)
#使用最佳C值初始化逻辑回归模型并训练
from sklearn import metrics
train_predicted=lr.predict(test_new)
print(metrics.classification_report(test_labels,train_predicted))
# 读取新的手写数字图像,并进行预测
p1=cv2.imread("p1.png")
gray_p1=cv2.cvtColor(p1,cv2.COLOR_BGR2GRAY)
tess=np.array(gray_p1)
tess_new=tess.reshape(-1,400).astype(np.float32)
# 使用训练好的模型进行预测
predicted_shouxie=lr.predict(tess_new)
print(predicted_shouxie)
相关文章:

机器学习:逻辑回归处理手写数字的识别
1、获取数据, 图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分,划分出训练集和测试集。 import numpy as np import pandas as pd import cv2 imgcv2.imread("digits.png")#读取文件 graycv2.cvtColor(img,cv2.COLOR_BGR2G…...

文件上传真hard
一、SpringMVC实现文件上传 1.1.项目结构 1.1.2 控制器方法 RequestMapping("/upload1.do")public ModelAndView upload1(RequestParam("file1") MultipartFile f1) throws IOException {//获取文件名称String originalFilename f1.getOriginalFilename(…...

精益管理|介绍一本专门研究防错法(Poka-Yoke)的书
在现代制造业中,如何确保产品在每个生产环节中不出现错误是企业追求的目标之一。而实现这一目标的关键技术之一就是防错法(Poka-Yoke)。作为一种简单而有效的精益管理、六西格玛管理工具,防错法帮助企业避免因人为错误或工艺不当导…...

面试题目:(4)给表达式添加运算符
目录 题目 代码 思路解析 例子 题目 题目 给定一个仅包含数字 0-9 的字符串 num 和一个目标值整数 target ,在 num 的数字之间添加 二元 运算符(不是一元)、- 或 * ,返回 所有能够得到 target 的表达式。1 < num.length &…...
[C#]将opencvsharp的Mat对象转成onnxruntime的inputtensor的3种方法
第一种方法:在创建tensor时候直接赋值改变每个tensor的值,以下是伪代码: var image new Mat(image_path);inpWidth image.Width;inpHeight image.Height;//将图片转为RGB通道Mat image_rgb new Mat();Cv2.CvtColor(image, image_rgb, Col…...

CTF入门教程(非常详细)从零基础入门到竞赛,看这一篇就够了!
一、CTF简介 CTF(Capture The Flag)中文一般译作夺旗赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,以代替之前黑客们通过互相发起真实攻击进行技术比拼的方式。…...

数据链路层 I(组帧、差错控制)【★★★★★】
(★★)代表非常重要的知识点,(★)代表重要的知识点。 为了把主要精力放在点对点信道的数据链路层协议上,可以采用下图(a)所示的三层模型。在这种三层模型中,不管在哪一段…...

悟空降世 撼动全球
文|琥珀食酒社 作者 | 积溪 一只猴子能值多少钱? 答案是:13个小目标 这两天 只要你家没有断网 一定会被这只猴子刷屏 它就是咱国产的3A游戏 《黑神话:悟空》 这只猴子到底有多火? 这么跟你说吧 茅台见了它都…...
Swoole 和 Java 哪个更有优势呢
Swoole 和 Java 各有优势,在性能上不能简单地说哪一个更好,需要根据具体的应用场景来分析。 Swoole 优势:高并发:Swoole 是一个基于 PHP 的异步、协程框架,专为高并发场景设计,适用于 I/O 密集型应用&…...

Salesforce 发布开源大模型 xGen-MM
xGen-MM 论文 在当今 AI 技术飞速发展的时代,一个新的多模态 AI 模型悄然崛起,引起了业界的广泛关注。这个由 Salesforce 推出的开源模型—— xGen-MM,正以其惊人的全能特性和独特优势,在 AI 领域掀起一阵旋风。那么,x…...

冒 泡 排 序
今天咱们单独拎出一小节来聊一聊冒泡排序昂 冒泡排序的核心思想就是:两两相邻的元素进行比较(理解思路诸君可看下图) 接下来我们上代码演示: 以上就是我们初步完成的冒泡排序,大家不难发现,不管数组中的元…...

采用先进的人工智能视觉分析技术,能够精确识别和分析,提供科学、精准的数据支持的智慧物流开源了。
智慧物流视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本可通过边缘计算技术…...
IAA游戏APP如何让合理地让用户观看更多广告,提高广告渗透率
广告变现已经成为休闲游戏开发者重要的收益方式之一,超50%国内休闲游戏已经采用广告变现的方式,游戏广告预算是游戏行业开发者广告变现的主要预算来源。 #深度好文计划#如何合理地提高广告渗透率? 广告渗透率能直接反映游戏中有广告行为用户…...

环网交换机的特殊作用是什么?
环网交换机作为现代网络建设的重要组成部分,具有独特而特殊的作用。在信息技术迅猛发展的今天,各类数据传输和网络连接需求日益增加,环网交换机的出现为解决这些问题提供了理想的方案。环网交换机通常将多个网络节点通过环形结构连接起来&…...
mac电脑安装Zsh并启用
安装 Zsh 1. 安装 Zsh 新版mac系统会默认安装并使用zsh,如没用,需在终端中安装: brew install zsh2. 安装 Oh My Zsh 克隆Oh My Zsh到你的目录: git clone https://github.com/robbyrussell/oh-my-zsh.git ~/.oh-my-zsh3. 复…...

【后续更新】python搜集上海二手房数据
源码如下: import asyncio import aiohttp from lxml import etree import logging import datetime import openpyxlwb = openpyxl.Workbook() sheet = wb.active sheet.append([房源, 房子信息, 所在区域, 单价, 关注人数和发布时间, 标签]) logging.basicConfig(level=log…...

创建GPTs,打造你的专属AI聊天机器人
在2023年11月的「OpenAI Devday」大会上,OpenAI再度带来了一系列令人瞩目的新功能,其中ChatGPT方面的突破尤为引人关注。而GPTs的亮相,不仅标志着个性化AI时代的到来,更为开发者和普通用户提供了前所未有的便利。接下来࿰…...
深度学习 vector 之模拟实现 vector (C++)
1. 基础框架 这里我们有三个私有变量,使用 _finish - _start 代表 _size,_end_of_storage - _start 代表 _capacity,并且使用到了模版,可以灵活定义存储不同类型的 vector,这里将代码量较小的函数直接定义在类的内部使…...

关于LLC知识10
在LLC谐振腔中能够变化的量 1、输入电压 2、Rac(负载) 所以增益曲线为红色(Rac无穷大)已经是工作的最大极限了,LLC不可能工作在红色曲线之外 负载越重时,增益曲线越往里面 假设: 输入电压…...
最长的严格递增或递减子数组
给你一个整数数组 nums 。 返回数组 nums 中 严格递增 或 严格递减 的最长非空子数组的长度。 示例 1: 输入:nums [1,4,3,3,2] 输出:2 解释: nums 中严格递增的子数组有[1]、[2]、[3]、[3]、[4] 以及 [1,4] 。 nums 中…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...

Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...