人才流失预测项目
在本项目中,通过数据科学和AI的方法,分析挖掘人力资源流失问题,并基于机器学习构建解决问题的方法,并且,我们通过对AI模型的反向解释,可以深入理解导致人员流失的主要因素,HR部门也可以根据分析做出正确的决定。
探索性数据分析
##1.数据加载
import pandas as pd
import seaborn as sns
data = pd.read_csv('../data/train.csv')
#分析建模,查看数据情况,1.数据包含数值型和类别型
data
查看数据基本信息
#字段,类型,缺失情况
data.info()
data.info() 来获取数据的信息,包括总行数(样本数)和总列数(字段数)、变量的数据类型、数据集中非缺失的数量以及内存使用情况。
从数据集的信息可以看出,一共有31 个特征,Attrition 是目标字段,23个变量是整数类型变量,8个是对象类型变量。
2.数据基本分析
#数据无缺失值,查看数据分布
data.describe()
跑baseline模型(使用不同的分类算法)
对特征不进行处理
# 选出数值型特征
numerical_feat = data.select_dtypes(include=['int64'])
numerical_feat
# 切分特征和标签
X = numerical_feat.drop(['Attrition'],axis=1)
Y = numerical_feat.Attrition
# 特征幅度缩放
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_scaled = scaler.fit_transform(X)
x_scaled = pd.DataFrame(x_scaled, columns=X.columns)
x_scaled
# 第一次跑模型
## 训练集测试集切分
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
import xgboost as xgb
import lightgbm as lgbX_train, X_test, Y_train, Y_test = train_test_split(x_scaled,Y,test_size=0.3,random_state=1)
# 决策树
dt_clf = DecisionTreeClassifier()
dt_clf.fit(X_train, Y_train)
dt_auc = roc_auc_score(Y_test, dt_clf.predict_proba(X_test)[:, 1])# 逻辑回归
lr_clf = LogisticRegression()
lr_clf.fit(X_train, Y_train)
lr_auc = roc_auc_score(Y_test, lr_clf.predict_proba(X_test)[:, 1])# 随机森林
rf_clf = RandomForestClassifier()
rf_clf.fit(X_train, Y_train)
rf_auc = roc_auc_score(Y_test, rf_clf.predict_proba(X_test)[:, 1])# 集成学习 - 梯度提升
gb_clf = GradientBoostingClassifier()
gb_clf.fit(X_train, Y_train)
gb_auc = roc_auc_score(Y_test, gb_clf.predict_proba(X_test)[:, 1])#XGBoost
xgb_clf = xgb.XGBClassifier(eval_metric="auc")
xgb_clf.fit(X_train, Y_train)
xgb_auc = roc_auc_score(Y_test, xgb_clf.predict_proba(X_test)[:, 1])#LightGBM
lgb_clf = lgb.LGBMClassifier()
lgb_clf.fit(X_train, Y_train)
lgb_auc = roc_auc_score(Y_test, lgb_clf.predict_proba(X_test)[:, 1])# 打印AUC值
print(f"Decision Tree AUC: {dt_auc}")
print(f"Logistic Regression AUC: {lr_auc}")
print(f"Random Forest AUC: {rf_auc}")
print(f"Gradient Boosting AUC: {gb_auc}")
print(f"XGBoost AUC: {xgb_auc}")
print(f"LightGBM AUC: {lgb_auc}")
3.特征工程
人才流失中,更多的是做特征选择
尝试编码
# 按照出差的频度进行编码
data.BusinessTravel = data.BusinessTravel.replace({'Non-Travel':0,'Travel_Rarely':1,'Travel_Frequently':2})# 性别与overtime编码
data.Gender = data.Gender.replace({'Male':1,'Female':0})
data.OverTime = data.OverTime.replace({'Yes':1,'No':0})
data.Over18 =data.Over18.replace({'Y':1,'N':0})
# 独热向量编码
new_df = pd.get_dummies(data=data,columns=['Department','EducationField','JobRole', 'MaritalStatus'])
new_df# 切分特征和标签
X = new_df.drop(['Attrition'],axis=1)
Y = new_df.Attrition
# 特征幅度缩放
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_scaled = scaler.fit_transform(X)
x_scaled = pd.DataFrame(x_scaled, columns=X.columns)
# 决策树
dt_clf = DecisionTreeClassifier()
dt_clf.fit(X_train, Y_train)
dt_auc = roc_auc_score(Y_test, dt_clf.predict_proba(X_test)[:, 1])# 逻辑回归
lr_clf = LogisticRegression()
lr_clf.fit(X_train, Y_train)
lr_auc = roc_auc_score(Y_test, lr_clf.predict_proba(X_test)[:, 1])# 随机森林
rf_clf = RandomForestClassifier()
rf_clf.fit(X_train, Y_train)
rf_auc = roc_auc_score(Y_test, rf_clf.predict_proba(X_test)[:, 1])# 集成学习 - 梯度提升
gb_clf = GradientBoostingClassifier()
gb_clf.fit(X_train, Y_train)
gb_auc = roc_auc_score(Y_test, gb_clf.predict_proba(X_test)[:, 1])#XGBoost
xgb_clf = xgb.XGBClassifier(eval_metric="auc")
xgb_clf.fit(X_train, Y_train)
xgb_auc = roc_auc_score(Y_test, xgb_clf.predict_proba(X_test)[:, 1])#LightGBM
lgb_clf = lgb.LGBMClassifier()
lgb_clf.fit(X_train, Y_train)
lgb_auc = roc_auc_score(Y_test, lgb_clf.predict_proba(X_test)[:, 1])# 打印AUC值
print(f"Decision Tree AUC: {dt_auc}")
print(f"Logistic Regression AUC: {lr_auc}")
print(f"Random Forest AUC: {rf_auc}")
print(f"Gradient Boosting AUC: {gb_auc}")
print(f"XGBoost AUC: {xgb_auc}")
print(f"LightGBM AUC: {lgb_auc}")
并没有明显提高
特征筛选,选出对模型贡献度大的特征
## 训练集测试集切分
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import mutual_info_classif
X_train, X_test, Y_train, Y_test = train_test_split(x_scaled,Y,test_size=0.3,random_state=1)
mutual_info = pd.Series(mutual_info)
mutual_info.index = X_train.columns
mutual_info.sort_values(ascending=False)plt.title("Feature Importance",fontsize=20)
mutual_info.sort_values().plot(kind='barh',figsize=(12,9),color='r')
plt.show()
剔除无效特征(后18位)
sorted_mutual_info = mutual_info.sort_values(ascending=False)
# 获取互信息值最低的18个特征的索引(列名)
least_important_feature_indices = sorted_mutual_info.tail(18).index# 从new_df中删除这些特征
new_df = new_df.drop(columns=least_important_feature_indices)
new_df
# 切分特征和标签
X = new_df.drop(['Attrition'],axis=1)
Y = new_df.Attrition
# 特征幅度缩放
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_scaled = scaler.fit_transform(X)
x_scaled = pd.DataFrame(x_scaled, columns=X.columns)
## 训练集测试集切分
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import mutual_info_classif
X_train, X_test, Y_train, Y_test = train_test_split(x_scaled,Y,test_size=0.3,random_state=1)
# 定义模型列表
models = [("Decision Tree", DecisionTreeClassifier()),("Logistic Regression", LogisticRegression()),("Random Forest", RandomForestClassifier()),("Gradient Boosting", GradientBoostingClassifier()),("XGBoost", xgb.XGBClassifier(eval_metric="auc")),("LightGBM", lgb.LGBMClassifier())
]# 训练模型并计算AUC
for name, model in models:model.fit(X_train, Y_train)pred_proba = model.predict_proba(X_test)[:, 1]auc = roc_auc_score(Y_test, pred_proba)print(f"{name} AUC: {auc}")
有了明显提高
做一些SMOTE
# SMOTE处理类别不均衡
from imblearn.over_sampling import SMOTE
sm = SMOTE(sampling_strategy='minority')
x,y = sm.fit_resample(X,Y)
# 过采样之后的比例
sns.countplot(data=new_df,x=y,palette='Set1')
plt.show()
print(y.value_counts())
# 特征幅度缩放
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_scaled = scaler.fit_transform(x)
x_scaled = pd.DataFrame(x_scaled, columns=x.columns)## 训练集测试集切分
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import mutual_info_classif
X_train, X_test, Y_train, Y_test = train_test_split(x_scaled,y,test_size=0.3,random_state=1)
# 定义模型列表
models = [("Decision Tree", DecisionTreeClassifier()),("Logistic Regression", LogisticRegression()),("Random Forest", RandomForestClassifier()),("Gradient Boosting", GradientBoostingClassifier()),("XGBoost", xgb.XGBClassifier(eval_metric="auc")),("LightGBM", lgb.LGBMClassifier())
]# 训练模型并计算AUC
for name, model in models:model.fit(X_train, Y_train)pred_proba = model.predict_proba(X_test)[:, 1]auc = roc_auc_score(Y_test, pred_proba)print(f"{name} AUC: {auc}")
模型有了大幅度提高
LOF
from pyod.models.lof import LOF
train = new_df.copy()
val = new_df.copy()
#创建LOF对象
clf = LOF(n_neighbors=20, algorithm='auto')
# 切分特征和标签
X = train.drop(['Attrition'],axis=1)#无监督学习算法,因此没有y,不需要传入y
clf.fit(X)#模型预测
train['out_pred'] = clf.predict_proba(X)[:,1]
#随机给的一个93%分数数的一个参考值(93%是随便给的,不宜太小)
#判断依据:只要小于93%分位数的值,就说明这个样本是正常数据,如果大于93%分位数的值,则说明是异常数据
key = train['out_pred'].quantile(0.93)
# 'Attrition' 是目标变量列,我们不想将其包括在特征列表中
excluded_columns = ['Attrition']
# 获取所有列名,并将排除列从列表中移除
feature_lst = [col for col in new_df.columns.tolist() if col not in excluded_columns]
#获取用于模型训练的特征列
x = train[train['out_pred'] < key][feature_lst]
y = train[train['out_pred'] < key]['Attrition']#准备验证集的x和y
x =train[feature_lst]
y = train['Attrition']
val_x = val[feature_lst]
val_y = val['Attrition']
#模型训练
lr_model = LogisticRegression(C=0.1,class_weight='balanced')
lr_model.fit(x,y)
from sklearn.metrics import roc_curve#模型预测和画图
y_pred = lr_model.predict_proba(x)[:,1]
fpr_lr_train,tpr_lr_train,_ = roc_curve(y,y_pred)
train_ks = abs(fpr_lr_train - tpr_lr_train).max()
print('train_ks : ',train_ks)y_pred = lr_model.predict_proba(val_x)[:,1]
fpr_lr,tpr_lr,_ = roc_curve(val_y,y_pred)
val_ks = abs(fpr_lr - tpr_lr).max()
print('val_ks : ',val_ks)from matplotlib import pyplot as plt
plt.plot(fpr_lr_train,tpr_lr_train,label = 'train LR')
plt.plot(fpr_lr,tpr_lr,label = 'evl LR')
plt.plot([0,1],[0,1],'k--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC Curve')
plt.legend(loc = 'best')
plt.show()
交叉验证和超参数调优
- 网格搜索:模型针对具有一定范围值的超参数网格进行评估,尝试参数值的每种组合,并实验以找到最佳超参数,计算成本很高。
- 随机搜索:这种方法评估模型的超参数值的随机组合以找到最佳参数,计算成本低于网格搜索。
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import cross_val_score# 定义模型列表
models = [("Decision Tree", DecisionTreeClassifier()),("Logistic Regression", LogisticRegression()),("Random Forest", RandomForestClassifier()),("Gradient Boosting", GradientBoostingClassifier()),("XGBoost", xgb.XGBClassifier(eval_metric="auc")),("LightGBM", lgb.LGBMClassifier())
]# X_train, Y_train, X_test, Y_test是已经准备好的数据集
# X_scaled是经过标准化的特征数据集# 训练模型并计算AUC
for name, model in models:model.fit(X_train, Y_train)pred_proba = model.predict_proba(X_test)[:, 1]auc = roc_auc_score(Y_test, pred_proba)print(f"{name} AUC: {auc}")# 使用交叉验证查看得分
for name, model in models:print("******", name, "******")cv_scores = cross_val_score(model, x_scaled, y, cv=5, scoring='roc_auc') # 使用roc_auc作为评分标准cv_mean = cv_scores.mean()print(f"Cross-validated AUC mean score: {cv_mean}")
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer, roc_auc_score# 定义模型列表
models = [("Decision Tree", DecisionTreeClassifier(), {'max_depth': [3, 5, 10]}),("Logistic Regression", LogisticRegression(), {'C': [0.1, 1, 10]}),("Random Forest", RandomForestClassifier(), {'n_estimators': [10, 50, 100]}),("Gradient Boosting", GradientBoostingClassifier(), {'n_estimators': [50, 100, 200]}),("XGBoost", xgb.XGBClassifier(eval_metric="auc"), {'n_estimators': [50, 100, 200]}),("LightGBM", lgb.LGBMClassifier(), {'n_estimators': [50, 100, 200]})
]# 使用网格搜索进行交叉验证
for name, model, params in models:print(f"Grid searching {name}...")grid_search = GridSearchCV(model, param_grid=params, cv=5, scoring='roc_auc')grid_search.fit(X_scaled, y)print(f"Best parameters for {name}: {grid_search.best_params_}")print(f"Cross-validated AUC mean score for {name}: {grid_search.best_score_}")
相关文章:

人才流失预测项目
在本项目中,通过数据科学和AI的方法,分析挖掘人力资源流失问题,并基于机器学习构建解决问题的方法,并且,我们通过对AI模型的反向解释,可以深入理解导致人员流失的主要因素,HR部门也可以根据分析…...

BUG——imx6u开发_结构体导致的死机问题(未解决)
简介: 最近在做imx6u的linux下裸机驱动开发,由于是学习的初级阶段,既没有现成的IDE可以使用,也没有GDB等在线调试工具,只能把代码烧写在SD卡上再反复插拔,仅靠卑微的亮灯来判断程序死在哪一步。 至于没有使…...
问答:什么是对称密钥、非对称密钥,http怎样变成https的?
文章目录 对称密钥 vs 非对称密钥HTTP 变成 HTTPS 的过程 对称密钥 vs 非对称密钥 1. 对称密钥加密 定义: 对称密钥加密是一种加密算法,其中加密和解密使用的是同一个密钥。特点: 速度快: 因为只使用一个密钥,所以加密和解密速度较快。密钥分发问题: 双…...

虚拟滚动列表组件ReVirtualList
虚拟滚动列表组件ReVirtualList 组件实现基于 Vue3 Element Plus Typescript,同时引用 vueUse lodash-es tailwindCss (不影响功能,可忽略) 在 ReList 的基础上,增加虚拟列表功能,在固定高度的基础上,可以优化大数…...

稳定、耐用、美观 一探究竟六角头螺钉螺栓如何选择
在机器与技术未被发现的过去,紧固件设计和品质并不稳定。但是,他们已成为当今许多行业无处不在的构成部分。六角头标准件或六角头标准件是紧固件中持续的头部设计之一,它有六个面,对广泛工业应用大有益处。六角头标准件或常分成六…...

数据库Mybatis基础操作
目录 基础操作 删除 预编译SQL 增、改、查 自动封装 基础操作 环境准备 删除 根据主键动态删除数据:使用了mybatis中的参数占位符#{ },里面是传进去的参数。 单元测试: 另外,这个方法是有返回值的,返回这次操作…...

人物形象设计:塑造独特角色的指南
引言 人物形象设计是一种创意过程,它利用强大的设计工具,通过视觉和叙述元素塑造角色的外在特征和内在性格。这种设计不仅赋予角色以生命,还帮助观众或读者在心理层面上与角色建立联系。人物形象设计的重要性在于它能够增强故事的吸引力和说…...

网络安全-安全策略初认识
文章目录 前言理论介绍1. 安全策略1.1 定义:1.2 关键术语: 2. 防火墙状态监测 实战步骤1:实验环境搭建步骤2:配置实现 总结1. 默认安全策略2. 自定义安全策略3. 防火墙状态会话表 前言 who:本文主要写给入门防火墙的技…...
python import相对导入与绝对导入
文章目录 相对导入与绝对导入绝对导入相对导入何时使用相对导入何时使用绝对导入示例 相对导入与绝对导入 在Python中,from .file_manager import SomeFunction 和 from file_manager import SomeFunction 两种导入方式看似相似,但在模块寻找机制上存在…...
深入理解 Go 语言原子内存操作
原子内存操作提供了实现其他同步原语所需的低级基础。一般来说,你可以用互斥体和通道替换并发算法的所有原子操作。然而,它们是有趣且有时令人困惑的结构,应该深入了解它们是如何工作的。如果你能够谨慎地使用它们,那么它们完全可以成为代码优化的好工具,而不会增加复杂性…...
PostgreSQL几个扩展可以帮助实现数据的分词和快速查询
在 PostgreSQL 数据库中,有几个扩展可以帮助实现数据的分词和快速查询,特别是在处理全文搜索和文本分析时。以下是几个常用的扩展: 1. pg_trgm pg_trgm(Trigram)扩展是 PostgreSQL 中的一个强大的工具,它可以通过计算字符串之间的相似度来实现快速文本搜索。它支持基于…...

C盘满了怎么办?教你清理C盘的20个大招,值得收藏备用
C盘满了怎么办?教你清理C盘的20个大招,值得收藏备用 今天给大家介绍20种C盘清理的方法,下次遇到C盘满了红了就知道怎么做了,喜欢请点赞收藏关注点评。 清理更新缓存 清理微信缓存 查找大文件清理或者迁移 磁盘缓存清理 系统还…...

原生js实现下滑到当前模块进度条填充
<div style"height: 1500px;"></div> <div class"progress-container"><div class"progress-bar" data-progress"90%"><p class"progress-text">Google Ads在Google搜索引擎上覆盖超过90%的互…...

显示弹出式窗口的方法
文章目录 1. 概念介绍2. 使用方法3. 示例代码 我们在上一章回中介绍了Sliver综合示例相关的内容,本章回中将介绍PopupMenuButton组件.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章回中介绍的PopupMenuButton组件位于AppBar右侧…...
Java-什么是缓存线程池?
什么是缓存线程池? 缓存线程池 (CachedThreadPool) 是一种特殊的线程池,它能够动态地调整线程的数量,以适应任 务的需求。这种线程池非常适合处理大量短暂的任务,因为它会根据任务的数量自动增加或减少线 程的数量。 缓存线程池的特点: 线程数量动态调整:缓存线程池…...
esbuild中的Binary Loader:处理二进制文件
在前端或Node.js项目中,有时需要处理二进制文件,如图片、音频、视频或其他非文本资源。esbuild提供了一款名为Binary Loader的插件,它能够在构建时将二进制文件加载为二进制缓冲区,并使用Base64编码将其嵌入到打包文件中。在运行时…...

深度好文:从《黑神话:悟空》看未来游戏趋势:高互动性、个性化与全球化
引言 在数字时代的浪潮中,游戏产业以其独特的魅力和无限的可能性,成为了全球娱乐文化的重要组成部分。随着科技的飞速发展,特别是高性能计算和人工智能技术的突破,游戏的世界变得越来越真实、细腻且富有深度。而在这股技术洪流中…...

【中项第三版】系统集成项目管理工程师 | 第 12 章 执行过程组
前言 本章属于10大管理的内容,上午题预计会考8-10分,下午案例分析也会进行考查。学习要以教材为主。 目录 12.1 指导与管理项目工作 12.1.1 主要输入 12.1.2 主要输出 12.2 管理项目知识 12.2.1 主要输入 12.2.2 主要输出 12.3 管理质量 12.3.…...
C语言自动生成宏定义枚举类型和字符串
#include <stdio.h>// 定义错误枚举 #define ERROR_LIST(e) \e(SUCCESS) \e(FAILURE) \e(NOT_FOUND) \e(TIMEOUT)// 使用宏生成枚举 #define GENERATE_ENUM(ENUM) ENUM, typedef enum {ERROR_LIST(GENERATE_ENUM) } ErrorCode;// 使用宏生成字符串数组…...
C#单例模式
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace _3._3._6_单例模式 {public class Singleton{private static Singleton s_instance;private int _state;private Singleton(int …...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...