当前位置: 首页 > news >正文

AI学习记录 - transformers的decoder和encoder中的自注意力矩阵和掩码矩阵的数据处理

掩码掩码,指的是掩盖住后面的词汇的词向量对我当前词汇造成影响。把PAD字符设置成负无穷大,概念上不叫掩码,只是计算方式和掩码一样。

怎么生成掩码,在非掩码注意力矩阵中,把PAD词向量每个维度设置成负无穷大,或者设置掩码矩阵为负无穷大,矩阵乘法的效果是一样的。

在实际计算的过程中,掩码不仅仅只是生成一半就可以了,我都知道GPT其实有限制token长度这一说法,假如限制50个token,我们最后生成的注意力矩阵就是长宽都是50个,但是当我们的句子不够50的时候,剩下的位置需要用指定字符去填充。

如下图:第一个矩阵的意思是一半做掩码防止后面词语对当前词汇的影响,第二个矩阵是对 填充字符 做掩码,因为填充字符的语义我们也是要求为对句子的影响为0,两个矩阵叠加得到第三个矩阵。(注:下图是叉为负无穷大)

在这里插入图片描述

举个例子,构造好掩码矩阵之后,跟右边的词向量句子做矩阵乘法,根据上一章节,可以看到 PAD填充符 对句子影响为负无穷大,达到我们的要求:无关字符对句子影响为0。(注:下图是叉为负无穷大)

在这里插入图片描述

预测阶段注意力矩阵的计算 encoder 阶段,没有掩码(注:下图是叉为负无穷大)

在这里插入图片描述
传递个decoder的词向量矩阵,最右侧的词向量矩阵当中,最底下的PAD词向量的每一个维度都是负无穷大
在这里插入图片描述

decoder 阶段,,有两个注意力矩阵,一个有掩码,一个没有掩码(注:下图是叉为负无穷大)

有掩码,

在这里插入图片描述
上面有个极其重点的内容,经过上面的一次矩阵运算,其实我已经进行了一个序列的不同长度的训练
就是下面这种计算方式,已经帮助我同时训练了 =(下面有新的解释)
输入:START, 输出 g
输入:START g, 输出 f
输入:START g f, 输出 h
输入:START g f h, 输出 PAD
~~
我不用像传统训练方式一样构造上面这种数据。
试验:当我进行预测输入START的时候,掩码矩阵是动态生成的,由于其他都是负无穷大,只有第一行有数字,其他的权重不会对START造成影响。我在训练的时候,第一行权重除了第一个是数字,其他都是负无穷大,矩阵乘法的到这这行的权重和词向量每一行相乘,虽然预测阶段和训练阶段计算方式有略微区别,但是这种恰当的巧合使得我不用特意去构造训练数据,这是一个计算巧合,这种掩码机制恰好帮我训练了这么多数据,巧合巧合巧合巧合巧合巧合巧合巧合巧合巧合巧合巧合,如下:
在这里插入图片描述
因为上图表达不充分,继续将上图改进,下图描述为,在最后一层映射词汇表层,只使用最后一个词汇进行预测。原因是在预测阶段预测下一个 token的时候,只会取 dec_outputs 中最后一个位置(即 g 符号,但是这个g是被START叠加过的) 来预测下一个 token。下面有个浅绿色的框,假设是映射词汇层。
上面数据集那里错了,其实是下面这个样子,训练阶段和预测阶段都是如此,用的是最后一个词:
输入:START, 输出 g
输入:g, 输出 f
输入:f, 输出 h
输入:h, 输出 PAD
在这里插入图片描述

上面走完之后,就到了没有掩码的注意力矩阵阶段,就是decoder和encoder结合的自注意力矩阵,这个矩阵的意思是a,b,c词分对 START 的影响程度, 对 g 的影响程度,对 f 的影响程度,对 h 的影响程度,将这些影响程度叠加在原来的 START,g,f,h上。

在这里插入图片描述

相关文章:

AI学习记录 - transformers的decoder和encoder中的自注意力矩阵和掩码矩阵的数据处理

掩码掩码,指的是掩盖住后面的词汇的词向量对我当前词汇造成影响。把PAD字符设置成负无穷大,概念上不叫掩码,只是计算方式和掩码一样。 怎么生成掩码,在非掩码注意力矩阵中,把PAD词向量每个维度设置成负无穷大&#xf…...

【Solidity】代币

ERC20 ERC-20 全称 “Ethereum Request for Comment 20”,是一种标准接口,用于实现代币合约。ERC20 标准定义了一组函数和事件,使得代币可以在不同的应用和平台之间互操作。 ERC20 标准接口定义了一组必须实现的函数和事件: in…...

5 - Linux YUM仓库及NFS共享服务

目录 一、YUM概述 1.YUM简介 2.软件仓库的提供方式 3.RPM软件包的来源 4. yum 命令的运用 二、搭建ftp YUM仓库 三、NFS共享服务 1.NFS简述 2.模拟NFS 一、YUM概述 1.YUM简介 YUM(Yellow dog Updater Modified)是一个专门为了解决包的依赖关系…...

上传文件,文件类型限制语法,各种媒体视频文件的Content-Type

各种媒体视频文件的Content-Type “application/x-apple-diskimage”: “DMG”, “application/epubzip”: “EPUB”, “application/java-archive”: “JAR”, “video/x-matroska”: “MKV”, “text/html”: “HTML|HTM”, “text/css”: “CSS”, “text/javascript…...

类和对象(下)(2)

类和对象(下)(2) static成员 • ⽤static修饰的成员变量,称之为静态成员变量,静态成员变量⼀定要在类外进⾏初始化。 • 静态成员变量为当前类的所有对象所共享,不属于某个具体的对象,不存在对象中&#…...

软件测试 - 自动化测试(概念)(Java)(自动化测试分类、web自动化测试、驱动、selenium自动化测试工具的安装)

一、自动化的概念 ⾃动洒⽔机,主要通上⽔就可以⾃动化洒⽔并且可以⾃动的旋转。 ⾃动洗⼿液,免去了⼿动挤压可以⾃动感应出洗⼿液 超市⾃动闸⻔,不需要⼿动的开⻔关⻔ ⽣活中的⾃动化案例有效的减少了⼈⼒的消耗,同时也提⾼了⽣…...

wpf datagrid 实现双向绑定

前台 <DataGridAutoGenerateColumns"False"Background"White"CanUserAddRows"True"Grid.Row"1"RowEditEnding"DataGrid_OnRowEditEnding"RowHeight"60"SelectionUnit"CellOrRowHeader"x:Name"…...

使用循环在el-select下拉框中循环出-3至50

问: 使用循环在el-select下拉框中循环出-3至50 回答: <el-form-itemprop"adPosition"label"广告位置":rules"{required: true, message: 广告位置不能为空, trigger: change}" ><el-select v-model"addDataForm.adPosition"…...

全球海事航行通告解析辅助决策系统

“全球海事航行通告解析辅助决策系统”是一个针对海事行业设计的智能系统&#xff0c;旨在帮助海上导航和航运操作人员解析和应对全球发布的海事航行通告。 要做这样的系统我们必须要了解海事签派员的日常工作。 海事签派员&#xff0c;也称为船舶操作员或船运调度员&#xff0…...

Spring 解决bean的循环依赖

Spring循环依赖-博客园 1. 什么是循环依赖 2. 循环依赖能引发什么问题 循环依赖可能引发以下问题&#xff1a; 初始化顺序不确定&#xff1a;循环依赖导致无法确定哪个对象应该先被创建和初始化&#xff0c;从而造成初始化顺序的混乱。这可能导致错误的结果或意外的行为。死…...

鸿蒙内核源码分析(ELF格式篇) | 应用程序入口并不是main

阅读之前的说明 先说明&#xff0c;本篇很长&#xff0c;也很枯燥&#xff0c;若不是绝对的技术偏执狂是看不下去的.将通过一段简单代码去跟踪编译成ELF格式后的内容.看看ELF究竟长了怎样的一副花花肠子&#xff0c;用readelf命令去窥视ELF的全貌&#xff0c;最后用objdump命令…...

seq2seq编码器encoder和解码器decoder详解

编码器 在序列到序列模型中&#xff0c;编码器将输入序列&#xff08;如一个句子&#xff09;转换为一个隐藏状态序列&#xff0c;供解码器生成输出。编码层通常由嵌入层和RNN&#xff08;如GRU/LSTM)等组成 Token:是模型处理文本时的基本单元&#xff0c;可以是词,子词,字符…...

前端使用 Konva 实现可视化设计器(21)- 绘制图形(椭圆)

本章开始补充一些基础的图形绘制&#xff0c;比如绘制&#xff1a;直线、曲线、圆/椭形、矩形。这一章主要分享一下本示例是如何开始绘制一个图形的&#xff0c;并以绘制圆/椭形为实现目标。 请大家动动小手&#xff0c;给我一个免费的 Star 吧~ 大家如果发现了 Bug&#xff0c…...

Python 将单词拆分为单个字母组成的列表对象

Python 将单词拆分为单个字母组成的列表对象 正文 正文 这里介绍一个简单算法&#xff0c;将英文单词拆分为其对应字母组成的列表。 str1 ACG lst1 [i for i in str1] lst2 list(str1)# Method 1 print(lst1) # Method 2 print(lst2) """ result: [A, C, G…...

欧洲 摩纳哥税务知识

摩纳哥是一个位于法国南部的城邦国家&#xff0c;以其豪华的生活环境和宽松的税收政策而闻名。自1869年以来&#xff0c;摩纳哥取消了个人所得税的征收&#xff0c;这使得它成为富裕人士和外籍人士的理想居住地。然而&#xff0c;这并不意味着摩纳哥的税收制度完全不存在。以下…...

域控制器的四大支柱分别是车载以太网、自适应Autosar

域控制器的四大支柱分别是车载以太网、自适应Autosar、高性能处理器和集中式E/E架构。 百度安全验证 。自适应Autosar采用Proxy/Skeleton的通信架构&#xff0c;同时采用中间件SOME/IP...

写给大数据开发:如何优化临时数据查询流程

你是否曾因为频繁的临时数据查询请求而感到烦恼&#xff1f;这些看似简单的任务是否正在蚕食你的宝贵时间&#xff0c;影响你的主要工作&#xff1f;如果是&#xff0c;那么这篇文章正是为你而写。 目录 引言&#xff1a;数据开发者的困境问题剖析&#xff1a;临时数据查询的…...

【MongoDB】Java连接MongoDB

连接URI 连接 URI提供驱动程序用于连接到 MongoDB 部署的指令集。该指令集指示驱动程序应如何连接到 MongoDB&#xff0c;以及在连接时应如何运行。下图解释了示例连接 URI 的各个部分&#xff1a; 连接的URI 主要分为 以下四个部分 第一部分 连接协议 示例中使用的 连接到具有…...

nginx支持的不同事件驱动模型

Nginx 支持的不同事件驱动模型 Nginx 是一款高性能的 Web 和反向代理服务器&#xff0c;它支持多种事件驱动模型来处理网络 I/O 操作。不同的操作系统及其版本支持不同的事件驱动模型&#xff0c;这些模型对于 Nginx 的并发处理能力和性能至关重要。下面详细介绍 Nginx 支持的…...

C++ TinyWebServer项目总结(7. Linux服务器程序规范)

进程 PID 进程的PID&#xff08;Process ID&#xff09;是操作系统中用于唯一标识一个进程的整数值。每个进程在创建时&#xff0c;操作系统都会分配一个唯一的PID&#xff0c;用来区分不同的进程。 PID的特点 唯一性&#xff1a; 在操作系统运行的某一时刻&#xff0c;每个…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

算法250609 高精度

加法 #include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; char input1[205]; char input2[205]; int main(){while(scanf("%s%s",input1,input2)!EOF){int a[205]…...

欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!

多连接 BLE 怎么设计服务不会乱&#xff1f;分层思维来救场&#xff01; 作者按&#xff1a; 你是不是也遇到过 BLE 多连接时&#xff0c;调试现场像网吧“掉线风暴”&#xff1f; 温度传感器连上了&#xff0c;心率带丢了&#xff1b;一边 OTA 更新&#xff0c;一边通知卡壳。…...