当前位置: 首页 > news >正文

LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可,附上ollma方式运行)

前言

日常没空,留着以后写

llama-index简介

官网:https://docs.llamaindex.ai/en/stable/

简介也没空,以后再写

注:先说明,随着官方的变动,代码也可能变动,大家运行不起来,可以进官网查查资料

加载本地embedding模型

如果没有找到 llama_index.embeddings.huggingface

那么:pip install llama_index-embeddings-huggingface

还不行进入官网,输入huggingface进行搜索

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import SettingsSettings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')

 加载本地LLM模型

还是那句话,如果以下代码不行,进官网搜索Custom LLM Model

from llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLMclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)

基于本地模型搭建简易RAG

from typing import Anyfrom llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLM
from llama_index.core import Settings,VectorStoreIndex,SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbeddingclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)if __name__ == "__main__":# 定义你的LLMpretrained_model_name_or_path = r'/home/nlp/model/LLM/THUDM/glm-4-9b-chat'embed_model_path = '/home/nlp/model/Embedding/BAAI/bge-m3'Settings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')Settings.llm = GLMCustomLLM(pretrained_model_name_or_path)documents = SimpleDirectoryReader(input_dir="home/xxxx/input").load_data()index = VectorStoreIndex.from_documents(documents,)# 查询和打印结果query_engine = index.as_query_engine()response = query_engine.query("萧炎的表妹是谁?")print(response)

ollama 

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.ollama import Ollamadocuments = SimpleDirectoryReader("data").load_data()# bge-base embedding model
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")# ollama
Settings.llm = Ollama(model="llama3", request_timeout=360.0)index = VectorStoreIndex.from_documents(documents,
)

欢迎大家点赞或收藏

大家的点赞或收藏可以鼓励作者加快更新哟~

参加链接:

LlamaIndex中的CustomLLM(本地加载模型)
llamaIndex 基于GPU加载本地embedding模型
 

官网文档

官网_starter_example_loca

官网_usage_custom

相关文章:

LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可,附上ollma方式运行)

前言 日常没空,留着以后写 llama-index简介 官网:https://docs.llamaindex.ai/en/stable/ 简介也没空,以后再写 注:先说明,随着官方的变动,代码也可能变动,大家运行不起来,可以进…...

Python 异步爬虫:高效数据抓取的现代武器

标题:“Python 异步爬虫:高效数据抓取的现代武器” 在当今信息爆炸的时代,网络爬虫已成为数据采集的重要工具。然而,传统的同步爬虫在处理大规模数据时往往效率低下。本文将深入探讨如何使用 Python 实现异步爬虫,以提…...

【数据结构算法经典题目刨析(c语言)】使用数组实现循环队列(图文详解)

💓 博客主页:C-SDN花园GGbond ⏩ 文章专栏:数据结构经典题目刨析(c语言) 目录 一.题目描述 二.解题思路 1.循环队列的结构定义 2.队列初始化 3.判空 4.判满 5.入队列 6.出队列 7.取队首元素 8.取队尾元素 三.完整代码实…...

PTA L1-005 考试座位号

L1-005 考试座位号(15分) 每个 PAT 考生在参加考试时都会被分配两个座位号,一个是试机座位,一个是考试座位。正常情况下,考生在入场时先得到试机座位号码,入座进入试机状态后,系统会显示该考生…...

软件测试3333

禅道? 学习正则表达式 目标: 能说出软件测试缺陷判定标准 能说出项目中缺陷的管理系统 能使用Excel对于缺陷进行管理 能使用工具管理缺陷 一、用例执行 说明:用例执行不通过,执行结果与用例的期望结果不一致(含义&…...

JJJ:结构体定义中常加的后缀:attribute ((packed))

__attribute__ ((packed)): 的作用就是告诉编译器取消结构体在编译过程中的优化对齐,按照实际占用字节数进行对齐,是GCC特有的语法。这个功能是跟操作系统没关系,跟编译器有关 在GCC下:struct my{ char ch; int a;} sizeof(int)4…...

【HTML】DOCTYPE作用

<!DOCTYPE html> DOCTYPE是document type&#xff08;文档类型&#xff09;的缩写。是HTML5中一种标准通用标记语言的文档类型声明&#xff0c;告诉浏览器文档的类型&#xff0c;便于解析文档。不同渲染模式会影响浏览器对CSS代码甚至JS脚本的解析。它必须声明在第一行。…...

STM32学习记录-04-EXTI外部中断

1 中断系统 &#xff08;1&#xff09;中断&#xff1a;在主程序运行过程中&#xff0c;出现了特定的中断触发条件&#xff08;中断源&#xff09;&#xff0c;使得CPU暂停当前正在运行的程序&#xff0c;转而去处理中断程序&#xff0c;处理完成后又返回原来被暂停的位置继续…...

Android Studio 动态表格显示效果

最终效果 一、先定义明细的样式 table_row.xml <?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_h…...

Python 全栈系列264 使用kafka进行并发处理

说明 暂时考虑的场景是单条数据处理特别复杂和耗时的场景。 场景如下&#xff1a; 要对一篇文档进行实体处理&#xff0c;然后再对实体进行匹配。在这个过程当中&#xff0c;涉及到了好几部分服务&#xff1a; 1 实体识别服务2 数据库查询服务3 es查询服务 整个处理包成了服…...

【安全靶场】-DC-7

❤️博客主页&#xff1a; iknow181 &#x1f525;系列专栏&#xff1a; 网络安全、 Python、JavaSE、JavaWeb、CCNP &#x1f389;欢迎大家点赞&#x1f44d;收藏⭐评论✍ 一、收集信息 1.查看主机是否存活 nmap -T4 -sP 192.168.216.149 2.主动扫描 看开放了哪些端口和功能 n…...

0065__windows开发要看的经典书籍

windows开发要看的经典书籍_window编程书籍推荐-CSDN博客...

第133天:内网安全-横向移动域控提权NetLogonADCSPACKDC永恒之蓝

案例一&#xff1a;横向移动-系统漏洞-CVE-2017-0146 这个漏洞就是大家熟悉的ms17-010&#xff0c;这里主要学习cs发送到msf&#xff0c;并且msf正向连接后续 原因是cs只能支持漏洞检测&#xff0c;而msf上有很多exp可以利用 注意msf不能使用4.5版本的有bug 这里还是反弹权…...

【IoTDB 线上小课 06】列式写入=时序数据写入性能“利器”?

【IoTDB 视频小课】更新来啦&#xff01;今天已经是第六期了~ 关于 IoTDB&#xff0c;关于物联网&#xff0c;关于时序数据库&#xff0c;关于开源... 一个问题重点&#xff0c;3-5 分钟&#xff0c;我们讲给你听&#xff1a; 列式写入到底是&#xff1f; 上一期我们详细了解了…...

【机器学习】小样本学习的实战技巧:如何在数据稀缺中取得突破

我的主页&#xff1a;2的n次方_ 在机器学习领域&#xff0c;充足的标注数据通常是构建高性能模型的基础。然而&#xff0c;在许多实际应用中&#xff0c;数据稀缺的问题普遍存在&#xff0c;如医疗影像分析、药物研发、少见语言处理等领域。小样本学习&#xff08;Few-Shot Le…...

2024.08.14 校招 实习 内推 面经

地/球&#x1f30d; &#xff1a; neituijunsir 交* 流*裙 &#xff0c;内推/实习/校招汇总表格 1、校招 | 理想汽车2025“理想”技术沙龙开启报名 校招 | 理想汽车2025“理想”技术沙龙开启报名 2、校招 | 紫光国芯2025校园招聘正式启动 校招 | 紫光国芯2025校园招聘正式…...

国产双通道集成电机一体化应用的电机驱动芯片-SS6951A

电机驱动芯片 - SS6951A为电机一体化应用提供一种双通道集成电机驱动方案。SS6951A有两路H桥驱动&#xff0c;每个H桥可提供较大峰值电流4.0A&#xff0c;可驱动两个刷式直流电机&#xff0c;或者一个双极步进电机&#xff0c;或者螺线管或者其它感性负载。双极步进电机可以以整…...

32 - II. 从上到下打印二叉树 II

comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9832%20-%20II.%20%E4%BB%8E%E4%B8%8A%E5%88%B0%E4%B8%8B%E6%89%93%E5%8D%B0%E4%BA%8C%E5%8F%89%E6%A0%91%20II/README.md 面试题 32 - II. 从上到下打…...

總結熱力學_3

參考: 陈曦<<热力学讲义>>http://ithatron.phys.tsinghua.edu.cn/downloads/thermodynamics.pdf 4 热力学量的测量 4.3 主温度计 常用的气体温度计有等体积气体温度计、声学气体温度计和介电常数气体温度计。很多气体在水的三相点附近都接近理想气体。但真正的理…...

TypeScript学习笔记1---认识ts与js的异同、ts的所有数据类型详解

前言&#xff1a;去年做过几个vue3js的项目&#xff0c;当时考虑到时间问题&#xff0c;js更加熟悉&#xff0c;学习成本低一点&#xff0c;所以只去了解了vue3。最近这段时间补了一下ts的知识点&#xff0c;现今终于有空来码文章了&#xff0c;做个学习总结&#xff0c;方便以…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...