Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个综合详细的例子。
一、Matplotlib
Matplotlib是Python中最基础也是最强大的数据可视化库之一。它提供了一整套绘图工具,可以创建各种类型的图表,如折线图、柱状图、散点图、饼图等。
1.1 Matplotlib基础
基本使用
Matplotlib的基本使用非常简单,只需要导入matplotlib.pyplot模块,然后使用其各种绘图函数即可。
import matplotlib.pyplot as plt# 创建数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 绘制折线图
plt.plot(x, y)
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('简单折线图')
plt.show()
设置图形属性
我们可以通过设置各种属性来定制图形的外观。
# 设置线条属性
plt.plot(x, y, color='green', marker='o', linestyle='dashed', linewidth=2, markersize=12)
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('设置线条属性的折线图')
plt.show()
多图绘制
使用subplot函数可以在同一个窗口中绘制多个图形。
# 创建数据
x = [1, 2, 3, 4, 5]
y1 = [2, 3, 5, 7, 11]
y2 = [1, 4, 9, 16, 25]# 创建子图
plt.subplot(2, 1, 1)
plt.plot(x, y1, 'r--')
plt.title('第一个子图')plt.subplot(2, 1, 2)
plt.plot(x, y2, 'g*-')
plt.title('第二个子图')plt.show()
1.2 Matplotlib高级
图例和标签
我们可以为图形添加图例和标签,以便更好地解释图表内容。
# 创建数据
x = [1, 2, 3, 4, 5]
y1 = [2, 3, 5, 7, 11]
y2 = [1, 4, 9, 16, 25]# 绘制折线图
plt.plot(x, y1, label='质数')
plt.plot(x, y2, label='平方数')# 添加图例和标签
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('添加图例和标签的折线图')
plt.legend()
plt.show()
注释和文本
可以在图表中添加注释和文本,以便更详细地解释图表中的数据点。
# 创建数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 绘制折线图
plt.plot(x, y)
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('添加注释的折线图')# 添加注释
plt.annotate('最高点', xy=(5, 11), xytext=(4, 9),arrowprops=dict(facecolor='black', shrink=0.05))plt.show()
图表样式
Matplotlib提供了许多内置的样式,可以轻松更改图表的整体外观。
# 使用内置样式
plt.style.use('ggplot')# 创建数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 绘制折线图
plt.plot(x, y)
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('使用ggplot样式的折线图')
plt.show()
二、Seaborn
Seaborn是基于Matplotlib构建的高级数据可视化库,提供了更简洁的API和更美观的默认样式,特别适合用于统计数据的可视化。
2.1 Seaborn基础
安装和导入
安装Seaborn非常简单,可以使用pip命令:
pip install seaborn
导入Seaborn也非常简单:
import seaborn as sns
import matplotlib.pyplot as plt
基本使用
Seaborn的基本使用方法与Matplotlib类似,但提供了更简洁的接口和更美观的默认样式。
# 导入数据集
tips = sns.load_dataset('tips')# 绘制散点图
sns.scatterplot(x='total_bill', y='tip', data=tips)
plt.xlabel('总账单')
plt.ylabel('小费')
plt.title('总账单与小费的关系')
plt.show()
绘制不同类型的图表
Seaborn提供了许多用于绘制不同类型图表的函数,如箱线图、柱状图、热力图等。
# 箱线图
sns.boxplot(x='day', y='total_bill', data=tips)
plt.xlabel('星期几')
plt.ylabel('总账单')
plt.title('不同星期几的总账单分布')
plt.show()# 热力图
flights = sns.load_dataset('flights')
flights_pivot = flights.pivot('month', 'year', 'passengers')
sns.heatmap(flights_pivot, annot=True, fmt='d', cmap='YlGnBu')
plt.xlabel('年份')
plt.ylabel('月份')
plt.title('不同年份和月份的乘客数量')
plt.show()
2.2 Seaborn高级
调整图表样式
Seaborn提供了一些函数可以调整图表的样式。
# 设置图表样式
sns.set_style('whitegrid')# 绘制散点图
sns.scatterplot(x='total_bill', y='tip', data=tips)
plt.xlabel('总账单')
plt.ylabel('小费')
plt.title('总账单与小费的关系')
plt.show()
多图绘制
使用FacetGrid可以在同一个窗口中绘制多个图形,方便进行对比分析。
# 使用FacetGrid绘制多个图形
g = sns.FacetGrid(tips, col='time')
g.map(sns.scatterplot, 'total_bill', 'tip')
plt.show()
三、综合实例
下面是一个综合详细的例子,展示如何使用Matplotlib和Seaborn进行数据可视化。
3.1 示例数据集
我们将使用一个模拟的数据集,包含一些产品的销售数据。
import pandas as pd
import numpy as np# 创建数据集
np.random.seed(0)
dates = pd.date_range('20230101', periods=100)
df = pd.DataFrame({'date': dates,'product': np.random.choice(['A', 'B', 'C', 'D'], size=100),'sales': np.random.randint(50, 200, size=100),'profit': np.random.randint(20, 100, size=100)
})
3.2 使用Matplotlib进行数据可视化
销售趋势折线图
我们首先使用Matplotlib绘制产品销售趋势的折线图。
import matplotlib.pyplot as plt# 按日期汇总销售数据
sales_trend = df.groupby('date')['sales'].sum()# 绘制折线图
plt.figure(figsize=(10, 6))
plt.plot(sales_trend.index, sales_trend.values)
plt.xlabel('日期')
plt.ylabel('销售额')
plt.title('销售趋势折线图')
plt.show()
各产品销售额柱状图
接下来,我们绘制各产品销售额的柱状图。
# 按产品汇总销售数据
product_sales = df.groupby('product')['sales'].sum()# 绘制柱状图
plt.figure(figsize=(8, 6))
plt.bar(product_sales.index, product_sales.values, color=['red', 'blue', 'green', 'purple'])
plt.xlabel('产品')
plt.ylabel('销售额')
plt.title('各产品销售额柱状图')
plt.show()
3.3 使用Seaborn进行数据可视化
销售和利润的散点图
我们使用Seaborn绘制销售和利润的散点图。
import seaborn as sns# 绘制散点图
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sales', y='profit', hue='product', data=df)
plt.xlabel('销售额')
plt.ylabel('利润')
plt.title('销售额与利润的关系')
plt.show()
产品销售分布箱线图
我们使用Seaborn绘制各产品销售分布的箱线图。
# 绘制箱线图
plt.figure(figsize=(10, 6))
sns.boxplot(x='product', y='sales', data=df)
plt.xlabel('产品')
plt.ylabel('销售额')
plt.title('各产品销售分布箱线图')
plt.show()
3.4 综合实例的输出结果
通过运行上述代码,我们可以得到一系列图表,这些图表直观地展示了销售数据的分布和趋势。
- 销售趋势折线图:展示了整个时间段内的销售趋势,帮助我们识别出销售高峰和低谷。
- 各产品销售额柱状图:展示了不同产品的销售额对比,帮助我们确定哪些产品最受欢迎。
- 销售额与利润的散点图:展示了销售额和利润之间的关系,帮助我们分析销售和利润的相关性。
- 各产品销售分布箱线图:展示了不同产品的销售分布情况,帮助我们识别出销售额的集中区域和异常值。
通过这些图表,我们可以更好地理解和解释数据,从而做出更明智的决策。
四、总结
本文详细介绍了Python中两个主要的数据可视化库——Matplotlib和Seaborn的使用方法,并通过一个综合实例展示了如何使用这两个库进行数据可视化。Matplotlib提供了强大的绘图功能和高度的定制性,而Seaborn则提供了更简洁的接口和更美观的默认样式。根据不同的需求,我们可以选择合适的库进行数据可视化,从而更好地理解和解释数据。
作者:Rjdeng
链接:https://juejin.cn/post/7399985797540069386
相关文章:

Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个…...

Java CompletableFuture:你真的了解它吗?
文章目录 1 什么是 CompletableFuture?2 如何正确使用 CompletableFuture 对象?3 如何结合回调函数处理异步任务结果?4 如何组合并处理多个 CompletableFuture? 1 什么是 CompletableFuture? CompletableFuture 是 Ja…...

5个免费在线 AI 绘画网站推荐,附100+提示词!
在数字化时代,艺术创作与人工智能的结合已带来前所未有的创新体验。AI 绘画技术,基于先进的人工智能算法,为艺术创作提供了全新的视角和工具。当前,多个免费在线AI绘画平台应运而生,为创作者们提供了丰富的灵感和创作机…...
C++基础语法:while的使用
前言 "打牢基础,万事不愁" .C的基础语法的学习."学以致用,边学边用",编程是实践性很强的技术,在运用中理解,总结. 引入 while的使用是编写代码的基础内容.笔者的记忆力已不如以前,最近遇到了还花了不少功夫,可见是掌握地不够牢固.所以对while的思路和内容…...

鹏哥C语言自定义笔记重点(29-)
29.函数指针数组 30.void指针是不能直接解引用,也不能-整数。 void*是无具体类型的指针,可以接受任何类型的地址。 31.qsort:使用快速排序的思想实现一个排序函数(升序) 32. 33.地址的字节是4/8 34.char arr[]{a,b} sizeof(arr[0]1)答案是4࿰…...
代码随想录算法训练营第六十天 | dijkstra(堆优化版)、Bellman_ford 算法精讲
一、dijkstra(堆优化版) 题目连接:47. 参加科学大会(第六期模拟笔试) (kamacoder.com) 文章讲解:代码随想录 (programmercarl.com)——dijkstra(堆优化版) 二、Bellman_ford 算法精讲…...
boost::asio 库版本,C/C++代码编译兼容性
1、boost::asio::spawn 开启有栈(stackful)协同程序,版本改进及限制 > boost_1_80 版本应采用以下方式。 auto f [self, this](const boost::asio::yield_context& y) noexcept {bool success_ do_handshake(y);if (!success_) {clo…...
前端开发的项目导入方法与应用
前端项目启动问题归集: 由于前端的项目对于npm的版本有要求,需要将其升级到20,所以必要的时候通过nvm,或者直接下载最新的安装包进行npm覆盖安装。在项目目录中应用npm i安装node_modules,如果没有正常安装的话&#…...

C++:模拟实现string
前言: 为了更好的理解string底层的原理,我们将模拟实现string类中常用的函数接口。为了与std里的string进行区分,所以用命名空间来封装一个自己的strin类。 string.h #pragma once #define _CRT_SECURE_NO_WARNINGS 1#include<iostream&…...
浅谈Kafka(一)
浅谈Kafka(一) 文章目录 浅谈Kafka(一)Kafa的设计是什么样的数据传输的事务定义消息队列的应用场景Kafka怎么样判断节点是否存活Kafka的消息是采用pull模式还是push模式Kafka在磁盘上的消息格式Kafka高效文件存储设计特点Kafka与传…...

Redis7基础篇(八)
redis集群 是什么 能干吗 集群算法-分片-槽位slot redis集群的槽位slot redis集群的分片 分片和槽位的优势 槽位映射的解决方案 上面的三个方案分别对应了小厂 中厂 大厂 哈希槽取余分区 缺点 一致性哈希算法分区 小总结 哈希槽分区 经典面试题 这里说的redis是ap而不是cp的 …...
Tauri简介
在Tauri应用中,Rust和前端(通常是基于Web技术如React、Vue或Angular)之间的交互是一个核心特性,它允许开发者利用Rust的强大功能和性能,同时保持前端开发的灵活性和丰富的生态系统。这种交互主要通过Tauri提供的API桥接…...

JavaWeb——MVC架构模式
一、概述: MVC(Model View Controller)是软件工程中的一种 软件架构模式 ,它把软件系统分为模型、视图和控制器三个基本部分。用一种业务逻辑、数据、界面显示分离的方法组织代码,将业务逻辑聚集到一个部件里面,在改进和个性化定制界面及用户…...

Excel求和方法之
一 SUM(),选择要相加的数,回车即可 二 上面的方法还不够快。用下面这个 就成功了 三 还有一种一样快的 选中之后,按下Alt键和键(即Alt)...

Windows Server 域控制服务器安装及相关使用
目录 1.将客户机加入域 2.安装域控制器 3.新建域用户 4.设置用户登录时间,账户过期时间 5.软件分发 编辑 6.换壁纸 7.OU与GPO的概念 域为集中控制,拿下域控是拿下目标的关键 以Windows Server 2022为例 1.将客户机加入域 前提:客…...
linux基础命令(超级详细)
Linux 系统提供了丰富的命令行工具,用于各种文件操作、系统管理和网络配置等任务。以下是一些常用的 Linux 基础命令: 一、 文件和目录操作 1. ls: 列出目录内容 ls 列出当前目录的文件和目录 ls -l 以长格式列出文件和目录,包…...

大模型笔记之-XTuner微调个人小助手认知
前言 使用XTuner 微调个人小助手认知 一、下载模型 #安装魔搭依赖包 pip install modelscope新建download.py内容如下 其中Shanghai_AI_Laboratory/internlm2-chat-1_8b是魔搭对应的模型ID cache_dir/home/aistudio/data/model’为指定下载到本地的目录 from modelscope im…...

用TensorFlow实现线性回归
说明 本文采用TensorFlow框架进行讲解,虽然之前的文章都采用mxnet,但是我发现tensorflow提供了免费的gpu可供使用,所以果断开始改为tensorflow,若要实现文章代码,可以使用colaboratory进行运行,当然&#…...

IT计算机软件系统类毕业论文结构指南:从标题到结论的全景视角
一、背景 在快速发展的IT和人工智能领域,毕业论文不仅是学术研究的重要成果,也展示了学生掌握新技术和应用的能力。随着大数据和智能系统的复杂性增加,毕业设计(毕设)的论文章节安排变得尤为关键。一个结构清晰、内容详…...
leetcode27:移除元素(正解)
移除元素 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。 假设 nums 中不等于 val 的元素数量为 k,要通过此题,您需要执行以下操作…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...