当前位置: 首页 > news >正文

【深度学习】【分布式训练】Collective通信操作及Pytorch示例

相关博客
【深度学习】【分布式训练】Collective通信操作及Pytorch示例
【自然语言处理】【大模型】大语言模型BLOOM推理工具测试
【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型
【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍
【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型

Collective通信操作及Pytorch示例

​ 大模型时代,单机已经无法完成先进模型的训练和推理,分布式训练和推理将会是必然的选择。各类分布式训练和推断工具都会使用到Collective通信。网络上大多数的教程仅简单介绍这些操作的原理,没有代码示例来辅助理解。本文会介绍各类Collective通信操作,并展示pytorch中如何使用

一、Collective通信操作

1. AllReduce

​ 将各个显卡的张量进行聚合(sum、min、max)后,再将结果写回至各个显卡。

在这里插入图片描述

2. Broadcast

​ 将张量从某张卡广播至所有卡。

请添加图片描述

3. Reduce

​ 执行同AllReduce相同的操作,但结果仅写入具有的某个显卡。

请添加图片描述

4. AllGather

​ 每个显卡上有一个大小为N的张量,共有k个显卡。经过AllGather后将所有显卡上的张量合并为一个N×kN\times kN×k的张量,然后将结果分配至所有显卡上。

请添加图片描述

5. ReduceScatter

​ 执行Reduce相同的操作,但是结果会被分散至不同的显卡。

请添加图片描述

二、Pytorch示例

​ pytorch的分布式包torch.distributed能够方便的实现跨进程和跨机器集群的并行计算。本文代码运行在单机双卡服务器上,并基于下面的模板来执行不同的分布式操作。

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mpdef init_process(rank, size, fn, backend='nccl'):"""为每个进程初始化分布式环境,保证相互之间可以通信,并调用函数fn。"""os.environ['MASTER_ADDR'] = '127.0.0.1'os.environ['MASTER_PORT'] = '29500'dist.init_process_group(backend, rank=rank, world_size=size)fn(rank, size)def run(world_size, func):"""启动world_size个进程,并执行函数func。"""processes = []mp.set_start_method("spawn")for rank in range(world_size):p = mp.Process(target=init_process, args=(rank, world_size, func))p.start()processes.append(p)for p in processes:p.join()if __name__ == "__main__":run(2, func) # 这里的func随后会被替换为不同的分布式示例函数pass

​ 先对上面的模板做一些简单的介绍。

  • 函数run会根据传入的参数world_size,生成对应数量的进程。每个进程都会调用init_process来初始化分布式环境,并调用传入的分布式示例函数。
  • torch.distributed.init_process_group(),该方法负责各进程之间的初始协调,保证各进程都会与master进行握手。该方法在调用完成之前会一直阻塞,并且后续的所有操作都必须在该操作之后。调用该方法时需要初始化下面的4个环境变量:
    • MASTER_PORT:rank 0进程所在机器上的空闲端口;
    • MASTER_ADDR:rank 0进程所在机器上的IP地址;
    • WORLD_SIZE:进程总数;
    • RANK:每个进程的RANK,所以每个进程知道其是否是master;

1. 点对点通信

​ 在介绍其他collective通信之前,先看一个简单的点对点通信实现。

def p2p_block_func(rank, size):"""将rank src上的tensor发送至rank dst(阻塞)。"""src = 0dst = 1group = dist.new_group(list(range(size)))# 对于rank src,该tensor用于发送# 对于rank dst,该tensor用于接收tensor = torch.zeros(1).to(torch.device("cuda", rank))if rank == src:tensor += 1# 发送tensor([1.])# group指定了该操作所见进程的范围,默认情况下是整个worlddist.send(tensor=tensor, dst=1, group=group)elif rank == dst:# rank dst的tensor初始化为tensor([0.]),但接收后为tensor([1.])dist.recv(tensor=tensor, src=0, group=group)print('Rank ', rank, ' has data ', tensor)if __name__ == "__main__":run(2, p2p_block_func)

p2p_block_func实现从rank 0发送一个tensor([1.0])至rank 1,该操作在发送完成/接收完成之前都会阻塞。

​ 下面是一个不阻塞的版本:

def p2p_unblock_func(rank, size):"""将rank src上的tensor发送至rank dst(非阻塞)。"""src = 0dst = 1group = dist.new_group(list(range(size)))tensor = torch.zeros(1).to(torch.device("cuda", rank))if rank == src:tensor += 1# 非阻塞发送req = dist.isend(tensor=tensor, dst=dst, group=group)print("Rank 0 started sending")elif rank == dst:# 非阻塞接收req = dist.irecv(tensor=tensor, src=src, group=group)print("Rank 1 started receiving")req.wait()print('Rank ', rank, ' has data ', tensor)if __name__ == "__main__":run(2, p2p_unblock_func)

p2p_unblock_func是非阻塞版本的点对点通信。使用非阻塞方法时,因为不知道数据何时送达,所以在req.wait()完成之前不要对发送/接收的tensor进行任何操作。

2. Broadcast

def broadcast_func(rank, size):src = 0group = dist.new_group(list(range(size)))if rank == src:# 对于rank src,初始化tensor([1.])tensor = torch.zeros(1).to(torch.device("cuda", rank)) + 1else:# 对于非rank src,初始化tensor([0.])tensor = torch.zeros(1).to(torch.device("cuda", rank))# 对于rank src,broadcast是发送;否则,则是接收dist.broadcast(tensor=tensor, src=0, group=group)print('Rank ', rank, ' has data ', tensor)if __name__ == "__main__":run(2, broadcast_func)

broadcast_func会将rank 0上的tensor([1.])广播至所有的rank上。

3. Reduce与Allreduce

def reduce_func(rank, size):dst = 1group = dist.new_group(list(range(size)))tensor = torch.ones(1).to(torch.device("cuda", rank))# 对于所有rank都会发送, 但仅有dst会接收求和的结果dist.reduce(tensor, dst=dst, op=dist.ReduceOp.SUM, group=group)print('Rank ', rank, ' has data ', tensor)if __name__ == "__main__":run(2, reduce_func)

reduce_func会对group中所有rank的tensor进行聚合,并将结果发送至rank dst。

def allreduce_func(rank, size):group = dist.new_group(list(range(size)))tensor = torch.ones(1).to(torch.device("cuda", rank))# tensor即用来发送,也用来接收dist.all_reduce(tensor, op=dist.ReduceOp.SUM, group=group)print('Rank ', rank, ' has data ', tensor)if __name__ == "__main__":run(2, allreduce_func)

allreduce_func将group中所有rank的tensor进行聚合,并将结果发送至group中的所有rank。

4. Gather与Allgather

def gather_func(rank, size):dst = 1group = dist.new_group(list(range(size)))# 该tensor用于发送tensor = torch.zeros(1).to(torch.device("cuda", rank)) + rankgather_list = []if rank == dst:# gather_list中的tensor数量应该是size个,用于接收其他rank发送来的tensorgather_list = [torch.zeros(1).to(torch.device("cuda", dst)) for _ in range(size)]# 仅在rank dst上需要指定gather_listdist.gather(tensor, gather_list=gather_list, dst=dst, group=group)else:# 非rank dst,相当于发送tensordist.gather(tensor, dst=dst, group=group)print('Rank ', rank, ' has data ', gather_list)if __name__ == "__main__":run(2, gather_func)

gather_func从group中所有rank上收集tensor,并发送至rank dst。(相当于不进行聚合操作的reduce)

def allgather_func(rank, size):group = dist.new_group(list(range(size)))# 该tensor用于发送tensor = torch.zeros(1).to(torch.device("cuda", rank)) + rank# gether_list用于接收各个rank发送来的tensorgather_list = [torch.zeros(1).to(torch.device("cuda", rank)) for _ in range(size)]dist.all_gather(gather_list, tensor, group=group)# 各个rank的gather_list均一致print('Rank ', rank, ' has data ', gather_list)if __name__ == "__main__":run(2, allgather_func)

allgather_func从group中所有rank上收集tensor,并将收集到的tensor发送至所有group中的rank。

5. Scatter与ReduceScatter

def scatter_func(rank, size):src = 0group = dist.new_group(list(range(size)))# 各个rank用于接收的tensortensor = torch.empty(1).to(torch.device("cuda", rank))if rank == src:# 在rank src上,将tensor_list中的tensor分发至不同的rank上# tensor_list:[tensor([1.]), tensor([2.])]tensor_list = [torch.tensor([i + 1], dtype=torch.float32).to(torch.device("cuda", rank)) for i in range(size)]# 将tensor_list发送至各个rank# 接收属于rank src的那部分tensordist.scatter(tensor, scatter_list=tensor_list, src=0, group=group)else:# 接收属于对应rank的tensordist.scatter(tensor, scatter_list=[], src=0, group=group)# 每个rank都拥有tensor_list中的一部分tensorprint('Rank ', rank, ' has data ', tensor)if __name__ == "__main__":run(2, scatter_func)

scatter_func会将rank src中的一组tensor逐个分发至其他rank上,每个rank持有的tensor不同。

def reduce_scatter_func(rank, size):group = dist.new_group(list(range(size)))# 用于接收的tensortensor = torch.empty(1).to(torch.device("cuda", rank))# 用于发送的tensor列表# 对于每个rank,有tensor_list=[tensor([0.]), tensor([1.])]tensor_list = [torch.Tensor([i]).to(torch.device("cuda", rank)) for i in range(size)]# step1. 经过reduce的操作会得到tensor列表[tensor([0.]), tensor([2.])]# step2. tensor列表[tensor([0.]), tensor([2.])]分发至各个rank# rank 0得到tensor([0.]),rank 1得到tensor([2.])dist.reduce_scatter(tensor, tensor_list, op=dist.ReduceOp.SUM, group=group)print('Rank ', rank, ' has data ', tensor)if __name__ == "__main__":run(2, reduce_scatter_func)

参考资料

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

https://pytorch.org/tutorials/intermediate/dist_tuto.html#collective-communication

https://pytorch.org/docs/stable/distributed.html#collective-functions

相关文章:

【深度学习】【分布式训练】Collective通信操作及Pytorch示例

相关博客 【深度学习】【分布式训练】Collective通信操作及Pytorch示例 【自然语言处理】【大模型】大语言模型BLOOM推理工具测试 【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型 【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介…...

Spring常用注解说明

目录 1.常用注解 2.特别说明 3.xml及注解方式 1.常用注解 (1) SpringBootApplication (2) ControllerRestControllerRequestMappingRequestParamPathVariableGetMappingPostMappingPutMappingDeleteMappingResponseBodyRequestBodyCrossOrigin (3) ConfigurationBeanServ…...

13-C++面向对象(纯虚函数(抽象类)、多继承、多继承-虚函数、菱形继承、虚继承、静态成员)

虚析构函数 存在父类指针指向子类对象的情况,应该将析构函数声明为虚函数(虚析构函数) 纯虚函数 纯虚函数:没有函数体且初始化为0的虚函数,用来定义接口规范 抽象类: 含有纯虚函数的类,不可以实…...

Android DataBinding 自定义View实现数据双向绑定

看不懂的可以先看看单向数据绑定:Android DataBinding数据变化时自动更新界面_皮皮高的博客-CSDN博客 然后再确定已经启动了dataBinding的情况下,按下面的顺序来: 首先创建一个自定义View: import android.content.Context imp…...

网络安全中的渗透测试主要那几个方面

渗透测试中主要有软件测试和渗透测试。 1、测试对象不同 软件测试:主要测试的是程序、数据、文档。 渗透测试:对象主要为网络设备、主机操作系统、数据库系统和应用系统。 2、测试内容不同 软件测试:主要工作内容是验证和确认,发…...

Cursor:GPT-4 驱动的强大代码编辑器

Cursor (https://www.cursor.so/)是 GPT-4 驱动的一款强大代码编辑器,可以辅助程序员进行日常的编码。下面通过一个实际的例子来展示 Cursor 如何帮助你编程。这个例子做的事情是网页抓取。抓取的目标是百度首页上的百度热搜,如下…...

C/C++中for语句循环用法及练习

目录 语法 下面是 for 循环的控制流: 实例 基于范围的for循环(C11) 随堂笔记! C语言训练-计算1~N之间所有奇数之和 题目描述 输入格式 输出格式 样例输入 样例输出 环形方阵 干货直达 for 循环允许您编写一个执行特定次数的循环的重复控制结构。…...

AnimatorOverrideController说明

unity-AnimatorOverrideControllerhttps://docs.unity.cn/cn/current/ScriptReference/AnimatorOverrideController.html 用于控制动画器重写控制器的接口。 动画器重写控制器的用途是重写某个控制器的动画剪辑,从而为给定化身定制动画。 在运行时基于相同的 Anim…...

1.4、第三阶段 MySQL数据库

root数据库技术 一、数据库理论 1 什么是数据库技术 数据库技术主要研究如何组织、存储数据,并如何高效地提取和处理数据。 2 什么是SQL SQL(Structured Query Language)结构化查询语言 SQL是操作数据库的命令集,也是功能齐全的…...

LeetCode:202. 快乐数

🍎道阻且长,行则将至。🍓 🌻算法,不如说它是一种思考方式🍀算法专栏: 👉🏻123 一、🌱202. 快乐数 题目描述:编写一个算法来判断一个数 n 是不是快…...

Android 14 新功能之 HighLights:快速实现文本高亮~

日常开发中可能会遇到给 TextView 的全部或部分文本增加高亮效果的需求,以前可能是通过 Spannable 或者 Html 标签实现。 升级 Android 14 后就不用这么迂回了,因其首次引入直接设置高亮的 API:HighLights。需要留意的是 HighLights API 和 …...

[渗透教程]-004-嗅探工具-Nmap

文章目录 Nmap介绍基本操作进阶操作Nmap介绍 nmap是一个网络扫描和主机检测工具,它可以帮助用户识别网络上的设备和服务。获取主机正在运行哪些服务,nmap支持多种扫描,UDP,TCP connect(),TCP SYN(半开扫描) ftp代理,反向标志,ICMP,FIN,ACK扫描,ftp代理,反向标志,ICMP. 可以用于…...

大数据技术之Hive SQL题库-初级

第一章环境准备1.1 建表语句hive>-- 创建学生表 DROP TABLE IF EXISTS student; create table if not exists student_info(stu_id string COMMENT 学生id,stu_name string COMMENT 学生姓名,birthday string COMMENT 出生日期,sex string COMMENT 性别 ) row format delim…...

常见HTTP状态码汇总

文章目录1xx: 信息2xx: 成功3xx: 重定向4xx: 客户端错误5xx: 服务器错误1xx: 信息 状态码描述100 Continue服务器仅接收到部分请求,但是一旦服务器并没有拒绝该请求,客户端应该继续发送其余的请求。101 Switching Protocols服务器转换协议:服…...

蓝桥杯刷题冲刺 | 倒计时15天

作者:指针不指南吗 专栏:蓝桥杯倒计时冲刺 🐾马上就要蓝桥杯了,最后的这几天尤为重要,不可懈怠哦🐾 文章目录1.年号字串2.裁纸刀3.猜生日1.年号字串 题目 链接: 年号字串 - 蓝桥云课 (lanqiao.c…...

【差分数组】

差分数组一维差分差分数组的作用差分矩阵结语一维差分 输入一个长度为 n 的整数序列。接下来输入 m个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c ,请你输出进行完所有操作后的序列。 输入格式 第一行包含两个…...

2022年NOC软件创意编程(学而思)决赛小学高年级组scratch

2022NOC决赛图形化小高组 一、选择题 1.运行下面的程序,最终“我的变量”的值是多少? 2.希望定义一个函数如下,可以让角色旋转指定的圈数。里面空缺的地方填上什么数字比较合适? 3.运行程序,在舞台上可以看见几个角色 ? 4.运行程序,角色会依次说什么 ? 5.我们都知…...

[JAVA]一步接一步的一起开发-图书管理系统(非常仔细,你一定能看懂)[1W字+]

目录 1.想法 2.框架的搭构 2.1图书 2.1.1Book类 2.1.2BookList类 2.2用户 2.2.1User抽象类 2.2.2AdminUser类(管理者) 2.2.3NormalUser 2.3操作 操作接口 借阅操作 删除操作 查询操作 归还图书 展示图书 退出系统 2.4小结 3.主函数的编…...

大数据周会-本周学习内容总结07

目录 01【hadoop】 1.1【编写集群分发脚本xsync】 1.2【集群部署规划】 1.3【Hadoop集群启停脚本】 02【HDFS】 2.1【HDFS的API操作】 03【MapReduce】 3.1【P077- WordCount案例】 3.2【P097-自定义分区案例】 历史总结 01【hadoop】 1.1【编写集群分发脚本xsync】…...

搭建一个双系统个人服务器

搭建一个双系统个人服务器0.前言一、双系统安装1.磁盘划分2.windows安装3.ubuntu安装二、系统启动项美化:1. refind引导2. 美化 grub 界面三、系统代理0.前言 年后找了份工作,忙于适应新环境所以更新也减缓了,最近闲暇时间给个人电脑进行了整…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

龙虎榜——20250610

上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

python/java环境配置

环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...