【数据分享】2000-2022年我国省市县三级的逐日O3数据(免费获取\excel\shp格式)
空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000-2022年的省市县三级的逐日PM2.5数据、2013-2022年的省市县三级的逐日CO数据、2013-2022年的省市县三级的逐日SO2数据、2008-2022年我国省市县三级的逐日NO2数据和2000-2022年我国省市县三级的逐日PM10数据(均可咨询获取)!
本次我们分享的是我国2000—2022年的省市县三级的逐日O3数据,数据包括excel和shp两种数据格式,数据单位为µg/m3,数据坐标为WGS1984!该数据是基于之前分享的2000-2022年全国范围逐日O3栅格数据(可查看之前的文章获悉详情),依据行政边界数据(包括全国省份行政边界、地级市行政边界、区县行政边界),合计行政边界内每日O3的平均值得到的。
大家可以在公众号回复关键词 331免费获取该数据!无需转发文章,直接获取!以下为数据的详细介绍:
01 数据预览
①省份层级的逐日O3数据
首先,我们先来看看省份层级的逐日O3数据,数据包括Excel和Shp两种格式!
需要说明的是:
2000至2022年的所有天数的逐日O3数据汇总在一个Excel文件中,由于单个Shp文件能支持的字段有限制,所有年份的数据没办法保存到一个Shp文件中,因此每个年份的逐日O3数据保存为一个Shp文件,每个Shp文件的属性表中包括当年的365天每天的O3数据。
地级市和区县同理!
我们以2022年1月1号—1月15号为例,来预览一下省份层级Excel格式的逐日O3数据,数据字段包括省份名称、省份代码和每日O3:

下面我们再以2022年6月1号的数据为例,来预览一下省份层级Shp格式的逐日O3数据:

②地级市层级的逐日O3数据
下面我们来看看地级市层级的逐日O3数据,数据包括Excel和Shp两种格式!
我们先以2022年1月1号—1月15号为例,来预览一下地级市层级Excel格式的逐日O3数据,数据字段包括城市名称、城市代码、省份名称、省份代码和每日O3:

下面我们再以2022年6月1号的数据为例,来预览一下地级市层级Shp格式的逐日O3数据:

③区县层级的逐日O3数据
下面我们来看看区县层级的逐日O3数据,数据包括Excel和Shp两种格式!
我们先以2022年1月1号—1月12号为例,来预览一下地级市层级Excel格式的逐日O3数据,数据字段包括区县名称、区县代码、城市名称、城市代码、省份名称、省份代码和每日O3:

下面我们再以2022年6月1号的数据为例,来预览一下区县层级Shp格式的逐日O3数据:

02 数据详情
数据来源:
原始数据来源于美国马里兰大学韦晶博士、李占清教授团队在国家青藏高原科学数据中心平台上分享的数据!关于原始数据的介绍。
数据处理说明:
基于上述原始数据,我们采用国家地理信息公共服务平台(天地图)发布的审图号为GS(2024)0650号的2024年省市县三级行政区划Shp数据(可查看之前的文章获悉详情),分别汇总各个省份(地级市和区县同理)内所有栅格日O3的平均值,最终得到每个省份(地级市和区县同理)的日O3数据。
时间范围:
2000-2022年(逐日)
空间范围:
省/市/县
数据格式:
Excel/Shp
数据单位:
ug/m3
数据坐标:
WGS_1984
数据引用:
韦晶, 李占清. (2023). 中国高分辨率高质量地面O3数据集(2000-2022). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.10477125.
Wei, J., Li, Z. (2023). ChinaHighO3: High-resolution and High-quality Ground-level MDA8 O3 Dataset for China (2000-2022). National Tibetan Plateau / Third Pole Environment Data Center.
https://doi.org/10.5281/zenodo.10477125.
如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!
03 数据获取
如需获取数据,可以点击下方的名片链接,关注“立方数据学社”,并咨询数据获取~
相关文章:
【数据分享】2000-2022年我国省市县三级的逐日O3数据(免费获取\excel\shp格式)
空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000-2022年的省市县三级的逐日PM2.5数据、2013-2022年的省市县三级的逐日CO数据、2013-2022年的省市县三级的逐日SO2数据、2008-2022年我国省市县三级的逐日NO2数据和2000-2022年我国省市县三级…...
Python 的http.server库详细介绍
http.server 是 Python 标准库中的一个模块,用于创建基本的 HTTP 服务器。这个模块非常适合用于开发、测试、以及在本地网络中共享文件。以下是对 http.server 模块的详细介绍。 Python 官方文档:http.server — HTTP 服务器 模块概述 http.server 提…...
使用ffmpeg在视频中绘制矩形区域
由于项目需要对视频中的人脸做定位跟踪, 我先使用了人脸识别算法,对视频中的每个帧识别人脸、通过人脸库比对,最终记录坐标等信息。 然后使用ffmpeg中的 drawbox 滤镜功能,选择性的绘制区域。从而实现人脸定位跟踪 1、drawbox …...
计算机,数学,AI在社会模拟中的应用
这些模型通常属于社会模拟的范畴,利用计算机技术和复杂系统理论来模拟和预测社会动态。以下是几种常见的社会模拟模型: 1. 系统动力学模型 系统动力学模型通过建立数学方程来描述社会系统中的各种变量及其相互关系。这种模型适用于宏观层面的社会变化分…...
【数据结构】排序算法系列——插入排序(附源码+图解)
插入排序 算法思想 插入排序的算法思想其实很容易理解,它秉持着一个不变的循环:比较->交换->比较->交换…因为我们排序最终的目的是要得到递增或者递减的数据,那么在原有的数据中,我们可以将数据依次两两进行比较&…...
TOMATO靶机漏洞复现
步骤一,我们来到tomato页面 什么也弄不了只有一番茄图片 弱口令不行,xxs也不行,xxe还是不行 我们来使用kali来操作... 步骤二,使用dirb再扫一下, dirb http://172.16.1.133 1.发现这个文件可以访问.我们来访问一下 /antibot_i…...
高基数 GroupBy 在 SLS SQL 中的查询加速
作者:顾汉杰(执少) 什么是高基数 GroupBy 简单来说,想要分析的数据,拥有超多的“唯一值计数”(Distinct Count),而我们需要对这些数据进行分组分析(如统计次数、排名、…...
TP5队列和TP5 使用redis 等相关
TP5.thinkphp之门面(facade类)面试_thinkphp facade-CSDN博客 TP5中的消息队列_tp 5.0 队列 release 时间单位-CSDN博客 thinkphp-queue自带的队列包使用分析_php think queue:listen-CSDN博客TP5 使用redis_tp5 redis-CSDN博客...
【R语言速通】1.数据类型
文章目录 0. 变量名1.基本数据类型1.1 数值型1.2 整型1.3 复数型1.4 逻辑型1.5 字符型 2.复合数据类型2.1 向量向量操作向量的常用函数 2.2 矩阵矩阵操作矩阵的常用函数 2.3 数组数组的操作数据的运算数组的访问数组的维度操作 数组的常用函数 2.4 数据框数据框操作数据框的常用…...
【C++设计模式】(三)创建型模式:单例模式
文章目录 (三)创建型模式:单例模式饿汉式懒汉式饿汉式 v.s. 懒汉式 (三)创建型模式:单例模式 单例模式在于确保一个类只有一个实例,并提供一个全局访问点来访问该实例。在某些情况下࿰…...
基于Android Studio的行程记录APK开发指南(三)---界面设计及两种方法获取用户位置
前言 本系列教程我们来看看如何使用Android Studio去开发一个APK用于用户的实时行程记录 第一期:基于Android Studio的用户行程记录APK开发指南(一):项目基础配置与速通Kotlin-CSDN博客第二期:基于Android Studio的行程记录APK开发指南(二):…...
大厂趋势:低代码不等于低能力,赋能高效开发新纪元
大厂趋势:低代码不等于低能力,赋能高效开发新纪元 在数字化转型的浪潮中,科技巨头(大厂)作为行业的引领者,不断探索和创新,以应对日益复杂多变的市场需求和技术挑战。其中,“低代码…...
CentOS全面停服,国产化提速,央国企信创即时通讯/协同门户如何选型?
01. CentOS停服带来安全新风险, 国产操作系统迎来新的发展机遇 2024年6月30日,CentOS 7版本全面停服,于2014年发布的开源类服务器操作系统——CentOS全系列版本生命周期画上了句号。国内大量基于CentOS开发和适配的服务器及平台,…...
如何确定Kubernetes是在采用哪种方式进行部署的?
这里写目录标题 1. 查看 Kubernetes 安装方式的常见文件和工具2. 检查 Kubernetes 的节点信息3. 检查 Kubernetes API 服务器的版本信息4. 检查系统服务和容器5. 查看安装文档或管理员笔记为什么可以确定是 kubeadm 部署?下一步确认 如果存在多个master节点…...
【PostgreSQL】地理空间数据的数据类型定义、索引优化、查询优化策略
PostgreSQL 是开源关系型数据库,对于地理空间数据的处理提供了很好的支持。在处理地理空间数据时,优化索引和查询的性能至关重要,因为地理空间操作通常涉及大量的数据计算和复杂的几何形状比较。 一、地理空间数据类型 注意geometry和geogra…...
RocketMQ广播消费消息
1、 基础概念 RocketMQ 支持两种消息模式:集群消费( Clustering )和广播消费( Broadcasting )。 集群消费模式(Cluster): 在集群消费模式下,同一个消费者组(…...
C#基础(2)枚举
前言 我们其实在前面已经了解过枚举到底有什么作用,但是那毕竟是概念性的语言,理解起来很抽象,今天我们会具体来讲一讲枚举,并谈一谈它的应用。 希望你能从今天的C#基础中有所收获。 基本概念 1.枚举:是一个比较特…...
Linux之MySQL日志
前言 数据库就像一个庞大的图书馆,而日志则是记录这个图书馆内每一本书的目录。正如在图书馆中找到特定书籍一样,数据库日志帮助我们追溯数据的变更、定位问题和还原状态。 在MySQL中,日志是非常重要的一个组成部分,它记录了数据…...
Redis集群模式—主从集群、哨兵集群、分片集群
主从集群 主从模式中,包括一个主节点(Master)和一个或多个从节点(Slave)。主节点负责处理所有写操作和读操作,而从节点则复制主节点的数据,并且只能处理读操作。当主节点发生故障时,…...
并发工具类(二):CyclicBarrier
1、CyclicBarrier 介绍 从字面上看 CyclicBarrier 就是 一个循环屏障,它也是一个同步助手工具,它允许多个线程 在执行完相应的操作后彼此等待共同到达一个屏障点。 CyclicBarrier可以被循环使用,当屏障点值变为0之后,可以在接下来…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
