pytorch对不同的可调参数,分配不同的学习率
在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点:
import torch
import torch.optim as optim# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 将这些参数分配给不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 模拟一次训练步骤
loss = (param1.sum() + param2.sum()) ** 2
loss.backward()
optimizer.step()# 打印更新后的参数值
print(param1)
print(param2)
对于余弦退火算法中,对于可调的学习率,pytorch对不同的可调参数,分配不同的学习率权重
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 为每个参数组分配不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 为整个优化器设置余弦退火调度器
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)# 模拟一个训练周期
for epoch in range(10):# 执行优化步骤loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()# 更新学习率scheduler.step()# 打印当前学习率for i, param_group in enumerate(optimizer.param_groups):print(f'Epoch {epoch+1}, Param Group {i+1}: Learning Rate = {param_group["lr"]}')
两个参数先后优化,第一阶段主要优化param1,后一阶段主要优化param2
方法1:分阶段调整优化器的参数组
你可以在第一阶段只优化 param1,然后在第二阶段只优化 param2。这可以通过在不同阶段将 param1 或 param2 从优化器中移除或冻结(将学习率设置为 0)来实现。
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 第一阶段:仅优化 param1
optimizer1 = optim.SGD([{'params': param1, 'lr': 0.01}], momentum=0.9)
scheduler1 = CosineAnnealingLR(optimizer1, T_max=5, eta_min=0.0001)# 第二阶段:仅优化 param2
optimizer2 = optim.SGD([{'params': param2, 'lr': 0.001}], momentum=0.9)
scheduler2 = CosineAnnealingLR(optimizer2, T_max=5, eta_min=0.0001)# 模拟训练
for epoch in range(10):# 第一阶段:前5个epoch优化param1if epoch < 5:optimizer1.zero_grad()loss = (param1.sum()) ** 2loss.backward()optimizer1.step()scheduler1.step()print(f'Epoch {epoch+1}: Optimizing param1, LR = {scheduler1.get_last_lr()}')# 第二阶段:后5个epoch优化param2else:optimizer2.zero_grad()loss = (param2.sum()) ** 2loss.backward()optimizer2.step()scheduler2.step()print(f'Epoch {epoch+1}: Optimizing param2, LR = {scheduler2.get_last_lr()}')
方法2:同时设置不同的学习率,但不同阶段侧重不同的参数
在这个方法中,你可以在第一阶段为 param1 设置较大的学习率,param2 设置为非常小的学习率(几乎不变)。然后在第二阶段反过来。
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 同时优化param1和param2,但不同阶段有不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01}, # param1初始学习率较大{'params': param2, 'lr': 0.0001} # param2初始学习率较小
], momentum=0.9)scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.00001)# 模拟训练
for epoch in range(10):optimizer.zero_grad()# 计算损失loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()scheduler.step()# 不同阶段调整学习率if epoch == 5:optimizer.param_groups[0]['lr'] = 0.0001 # param1 学习率降低optimizer.param_groups[1]['lr'] = 0.01 # param2 学习率增大# 打印学习率print(f'Epoch {epoch+1}: LR for param1 = {optimizer.param_groups[0]["lr"]}, LR for param2 = {optimizer.param_groups[1]["lr"]}')
相关文章:
pytorch对不同的可调参数,分配不同的学习率
在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点: import …...

零基础学习Python(八)—— time模块、request模块、数据分析和自动化办公相关模块、jieba模块、文件操作和os相关模块的简单介绍
1. time模块 time():获取当前时间戳,是一个数字 localtime():返回一个time.struct_time对象,里面有年月日时分秒,还有星期几(0表示星期一)和今年的第几天 import timeprint(time.time()) pri…...
快速回顾-HTML5
HTML5-常用的标签:https://blog.csdn.net/TKOP_/article/details/111395865 <!-- HTML5:声明文档类型的标签 --> <!DOCTYPE html><!-- 用于声明网页的主要语言为简体中文 --> <!-- 帮助搜索引擎、浏览器等理解网页的语言内容,以便…...

视频技术未来展望:EasyCVR如何引领汇聚融合平台新趋势
随着科技的飞速发展,视频技术已成为现代社会不可或缺的一部分,广泛应用于安防监控、娱乐传播、在线教育、电商直播等多个领域。本文将探讨视频技术的未来发展趋势,并深入分析TSINGSEE青犀EasyCVR视频汇聚融合平台的技术优势,展现其…...

7个流行的开源数据治理工具
数字化时代,数据是已经成为最宝贵的资产之一。数据支撑着我们的政府、企业以及各类组织的所有流程,并为决策以及智能化服务提供支撑。大数据有大用途,但是也可能隐藏着巨大的风险,特别是如果我们对数据的情况不是很了解的时候&…...

js | XMLHttpRequest
是什么? 和serve交互数据的对象;能够达到页面部分刷新的效果,也就是获取数据之后,不会使得整个页面都刷新;虽然名字是XML,但不限于XML数据。 怎么用? function reqListener() {console.log(thi…...
2024国赛数学建模A题思路模型代码
2024国赛数学建模思路资料,思路获取见文末名片 数学建模感想 纪念逝去的大学数学建模:两次校赛,两次国赛,两次美赛,一次电工杯。从大一下学期组队到现在,大三下学期,时间飞逝,我的…...
使用SVD(奇异值分解)进行降维的奇妙之旅
在数据分析和机器学习的广阔天地中,降维技术占据着举足轻重的地位。当我们面对高维数据时,不仅计算成本高昂,而且容易遭遇“维度灾难”,即随着维度的增加,数据的稀疏性和距离度量失效等问题愈发严重。为了克服这些挑战…...

【C++ 第二十一章】特殊类的设计(学习思路)
1.请设计一个类,不能被拷贝 设计思路 拷贝只会使用在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝,只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。 C98 的做法 将拷贝构造函数与赋值运算符…...
Java设计模式【命令模式】-行为型
1. 介绍 命令模式(Command Pattern) 是一种行为型设计模式,它将一个请求封装为一个对象,从而使我们可以用不同的请求对客户端进行参数化,并且支持请求的排队、记录日志以及撤销、重做等功能。命令模式将请求的发送者与…...

【HarmonyOS】一键扫码功能
【HarmonyOS】一键扫码功能 前言 鸿蒙在api10之后,对系统api的基础上,封装了较为复杂功能的开发工具包,统一称之为Kit。这些Kit根据功能定义的不同,划分为不同的种类Kit。如下图所示: 其实可以理解为集成在系统中的…...
Spring Boot应用中集成与使用多数据源
Spring Boot应用中集成与使用多数据源 1. 前言 通过定义和使用多个数据源,能在Spring Boot应用中实现更复杂的数据管理场景,比如读写分离、数据冗余等。 2. 准备工作 环境准备:确保已经准备好Spring Boot的开发环境。数据库准备ÿ…...
探索 JavaScript 中的 instanceof 关键字
在 JavaScript 这门灵活而强大的编程语言中,instanceof 是一个非常重要的操作符,它用于检测一个对象是否在其原型链的原型构造函数的 prototype 属性中出现。简而言之,instanceof 用于测试一个对象是否是其父类或者其原型链上某个构造函数的实…...

Python爬虫02
xml 和html 区别 jsonpath模块 场景 多层嵌套的复杂字典直接提取数据 安装 pip install jsonpath使用 from jsonpath import jsonpathret jsonpath(dict, jaonpath语法规则字符串)语法规则 eg: lxml模块&xpath语法 谷歌浏览器 xpath helper 插件 作用对当前页面…...
HTTP/3
http相关知识点 HTTP/3是超文本传输协议(HTTP)的最新版本,旨在进一步提高Web性能和安全性。HTTP/3的显著变化是它基于QUIC(Quick UDP Internet Connections)协议,而不是之前版本中使用的TCP协议。QUIC是由…...
MySQL 字符串操作详解和案例示范
MySQL 字符串操作详解 MySQL 提供了丰富的字符串操作函数,能够对这些字符串进行截取、定位、替换等操作。本文将详细讲解 MySQL 中的字符串操作函数,包括 SUBSTRING()、SUBSTR()、LEFT()、RIGHT()、LOCATE()、POSITION()、FIND_IN_SET()、ELT()、INSERT…...

全双工语音交互
文章目录 微软小冰全双工字节大模型语音交互[Language Model Can Listen While Speaking](https://arxiv.org/html/2408.02622v1) 微软小冰全双工 全双工的定义:一路持续的听,upload audio;一路持续的输出,download audio…...

nginx中如何设置gzip
前言 Nginx通过配置gzip压缩可以提升网站整体速度 Nginx的gzip功能是用于压缩HTTP响应内容的功能。当启用gzip时,在发送给客户端之前,Nginx会将响应内容压缩以减小其大小。这样可以减少数据传输的带宽消耗和响应时间,提高网站的性能和速度。…...

借老系统重构机会我写了个groovy规则引擎
公司老系统的重构计划早就有了,为了对Java硬编码的各种校验规则进行重构,特地参考了相关技术,最终选择了groovy进行了系统的学习,并编写了一个即插即用的轻量级规则引擎。 文章目录 项目背景技术选型groovy的性能groovy脚本执行线…...

C#利用ffmpeg借助NVIDIA GPU实现实时RTSP硬解码+硬编码录制MP4
目录 说明 效果 项目 代码 下载 说明 利用周杰的开源项目 Sdcb.FFmpeg 项目地址:https://github.com/sdcb/Sdcb.FFmpeg/ 代码实现参考:https://github.com/sdcb/ffmpeg-muxing-video-demo 效果 C#利用ffmpeg借助NVIDIA GPU实现实时RTSP硬解码硬…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...