pytorch对不同的可调参数,分配不同的学习率
在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点:
import torch
import torch.optim as optim# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 将这些参数分配给不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 模拟一次训练步骤
loss = (param1.sum() + param2.sum()) ** 2
loss.backward()
optimizer.step()# 打印更新后的参数值
print(param1)
print(param2)
对于余弦退火算法中,对于可调的学习率,pytorch对不同的可调参数,分配不同的学习率权重
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 为每个参数组分配不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 为整个优化器设置余弦退火调度器
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)# 模拟一个训练周期
for epoch in range(10):# 执行优化步骤loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()# 更新学习率scheduler.step()# 打印当前学习率for i, param_group in enumerate(optimizer.param_groups):print(f'Epoch {epoch+1}, Param Group {i+1}: Learning Rate = {param_group["lr"]}')
两个参数先后优化,第一阶段主要优化param1,后一阶段主要优化param2
方法1:分阶段调整优化器的参数组
你可以在第一阶段只优化 param1,然后在第二阶段只优化 param2。这可以通过在不同阶段将 param1 或 param2 从优化器中移除或冻结(将学习率设置为 0)来实现。
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 第一阶段:仅优化 param1
optimizer1 = optim.SGD([{'params': param1, 'lr': 0.01}], momentum=0.9)
scheduler1 = CosineAnnealingLR(optimizer1, T_max=5, eta_min=0.0001)# 第二阶段:仅优化 param2
optimizer2 = optim.SGD([{'params': param2, 'lr': 0.001}], momentum=0.9)
scheduler2 = CosineAnnealingLR(optimizer2, T_max=5, eta_min=0.0001)# 模拟训练
for epoch in range(10):# 第一阶段:前5个epoch优化param1if epoch < 5:optimizer1.zero_grad()loss = (param1.sum()) ** 2loss.backward()optimizer1.step()scheduler1.step()print(f'Epoch {epoch+1}: Optimizing param1, LR = {scheduler1.get_last_lr()}')# 第二阶段:后5个epoch优化param2else:optimizer2.zero_grad()loss = (param2.sum()) ** 2loss.backward()optimizer2.step()scheduler2.step()print(f'Epoch {epoch+1}: Optimizing param2, LR = {scheduler2.get_last_lr()}')
方法2:同时设置不同的学习率,但不同阶段侧重不同的参数
在这个方法中,你可以在第一阶段为 param1 设置较大的学习率,param2 设置为非常小的学习率(几乎不变)。然后在第二阶段反过来。
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 同时优化param1和param2,但不同阶段有不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01}, # param1初始学习率较大{'params': param2, 'lr': 0.0001} # param2初始学习率较小
], momentum=0.9)scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.00001)# 模拟训练
for epoch in range(10):optimizer.zero_grad()# 计算损失loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()scheduler.step()# 不同阶段调整学习率if epoch == 5:optimizer.param_groups[0]['lr'] = 0.0001 # param1 学习率降低optimizer.param_groups[1]['lr'] = 0.01 # param2 学习率增大# 打印学习率print(f'Epoch {epoch+1}: LR for param1 = {optimizer.param_groups[0]["lr"]}, LR for param2 = {optimizer.param_groups[1]["lr"]}')
相关文章:
pytorch对不同的可调参数,分配不同的学习率
在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点: import …...

零基础学习Python(八)—— time模块、request模块、数据分析和自动化办公相关模块、jieba模块、文件操作和os相关模块的简单介绍
1. time模块 time():获取当前时间戳,是一个数字 localtime():返回一个time.struct_time对象,里面有年月日时分秒,还有星期几(0表示星期一)和今年的第几天 import timeprint(time.time()) pri…...
快速回顾-HTML5
HTML5-常用的标签:https://blog.csdn.net/TKOP_/article/details/111395865 <!-- HTML5:声明文档类型的标签 --> <!DOCTYPE html><!-- 用于声明网页的主要语言为简体中文 --> <!-- 帮助搜索引擎、浏览器等理解网页的语言内容,以便…...

视频技术未来展望:EasyCVR如何引领汇聚融合平台新趋势
随着科技的飞速发展,视频技术已成为现代社会不可或缺的一部分,广泛应用于安防监控、娱乐传播、在线教育、电商直播等多个领域。本文将探讨视频技术的未来发展趋势,并深入分析TSINGSEE青犀EasyCVR视频汇聚融合平台的技术优势,展现其…...

7个流行的开源数据治理工具
数字化时代,数据是已经成为最宝贵的资产之一。数据支撑着我们的政府、企业以及各类组织的所有流程,并为决策以及智能化服务提供支撑。大数据有大用途,但是也可能隐藏着巨大的风险,特别是如果我们对数据的情况不是很了解的时候&…...

js | XMLHttpRequest
是什么? 和serve交互数据的对象;能够达到页面部分刷新的效果,也就是获取数据之后,不会使得整个页面都刷新;虽然名字是XML,但不限于XML数据。 怎么用? function reqListener() {console.log(thi…...
2024国赛数学建模A题思路模型代码
2024国赛数学建模思路资料,思路获取见文末名片 数学建模感想 纪念逝去的大学数学建模:两次校赛,两次国赛,两次美赛,一次电工杯。从大一下学期组队到现在,大三下学期,时间飞逝,我的…...
使用SVD(奇异值分解)进行降维的奇妙之旅
在数据分析和机器学习的广阔天地中,降维技术占据着举足轻重的地位。当我们面对高维数据时,不仅计算成本高昂,而且容易遭遇“维度灾难”,即随着维度的增加,数据的稀疏性和距离度量失效等问题愈发严重。为了克服这些挑战…...

【C++ 第二十一章】特殊类的设计(学习思路)
1.请设计一个类,不能被拷贝 设计思路 拷贝只会使用在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝,只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。 C98 的做法 将拷贝构造函数与赋值运算符…...
Java设计模式【命令模式】-行为型
1. 介绍 命令模式(Command Pattern) 是一种行为型设计模式,它将一个请求封装为一个对象,从而使我们可以用不同的请求对客户端进行参数化,并且支持请求的排队、记录日志以及撤销、重做等功能。命令模式将请求的发送者与…...

【HarmonyOS】一键扫码功能
【HarmonyOS】一键扫码功能 前言 鸿蒙在api10之后,对系统api的基础上,封装了较为复杂功能的开发工具包,统一称之为Kit。这些Kit根据功能定义的不同,划分为不同的种类Kit。如下图所示: 其实可以理解为集成在系统中的…...
Spring Boot应用中集成与使用多数据源
Spring Boot应用中集成与使用多数据源 1. 前言 通过定义和使用多个数据源,能在Spring Boot应用中实现更复杂的数据管理场景,比如读写分离、数据冗余等。 2. 准备工作 环境准备:确保已经准备好Spring Boot的开发环境。数据库准备ÿ…...
探索 JavaScript 中的 instanceof 关键字
在 JavaScript 这门灵活而强大的编程语言中,instanceof 是一个非常重要的操作符,它用于检测一个对象是否在其原型链的原型构造函数的 prototype 属性中出现。简而言之,instanceof 用于测试一个对象是否是其父类或者其原型链上某个构造函数的实…...

Python爬虫02
xml 和html 区别 jsonpath模块 场景 多层嵌套的复杂字典直接提取数据 安装 pip install jsonpath使用 from jsonpath import jsonpathret jsonpath(dict, jaonpath语法规则字符串)语法规则 eg: lxml模块&xpath语法 谷歌浏览器 xpath helper 插件 作用对当前页面…...
HTTP/3
http相关知识点 HTTP/3是超文本传输协议(HTTP)的最新版本,旨在进一步提高Web性能和安全性。HTTP/3的显著变化是它基于QUIC(Quick UDP Internet Connections)协议,而不是之前版本中使用的TCP协议。QUIC是由…...
MySQL 字符串操作详解和案例示范
MySQL 字符串操作详解 MySQL 提供了丰富的字符串操作函数,能够对这些字符串进行截取、定位、替换等操作。本文将详细讲解 MySQL 中的字符串操作函数,包括 SUBSTRING()、SUBSTR()、LEFT()、RIGHT()、LOCATE()、POSITION()、FIND_IN_SET()、ELT()、INSERT…...

全双工语音交互
文章目录 微软小冰全双工字节大模型语音交互[Language Model Can Listen While Speaking](https://arxiv.org/html/2408.02622v1) 微软小冰全双工 全双工的定义:一路持续的听,upload audio;一路持续的输出,download audio…...

nginx中如何设置gzip
前言 Nginx通过配置gzip压缩可以提升网站整体速度 Nginx的gzip功能是用于压缩HTTP响应内容的功能。当启用gzip时,在发送给客户端之前,Nginx会将响应内容压缩以减小其大小。这样可以减少数据传输的带宽消耗和响应时间,提高网站的性能和速度。…...

借老系统重构机会我写了个groovy规则引擎
公司老系统的重构计划早就有了,为了对Java硬编码的各种校验规则进行重构,特地参考了相关技术,最终选择了groovy进行了系统的学习,并编写了一个即插即用的轻量级规则引擎。 文章目录 项目背景技术选型groovy的性能groovy脚本执行线…...

C#利用ffmpeg借助NVIDIA GPU实现实时RTSP硬解码+硬编码录制MP4
目录 说明 效果 项目 代码 下载 说明 利用周杰的开源项目 Sdcb.FFmpeg 项目地址:https://github.com/sdcb/Sdcb.FFmpeg/ 代码实现参考:https://github.com/sdcb/ffmpeg-muxing-video-demo 效果 C#利用ffmpeg借助NVIDIA GPU实现实时RTSP硬解码硬…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

如何做好一份技术文档?从规划到实践的完整指南
如何做好一份技术文档?从规划到实践的完整指南 🌟 嗨,我是IRpickstars! 🌌 总有一行代码,能点亮万千星辰。 🔍 在技术的宇宙中,我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...

中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点
中科院1区顶刊|IF14:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点 当下,免疫与代谢性疾病的关联研究已成为生命科学领域的前沿热点。随着研究的深入,我们愈发清晰地认识到免疫系统与代谢系统之间存在着极为复…...