当前位置: 首页 > news >正文

【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提

2024年国赛B题解题思路

问题 1: 抽样检测方案设计

【题目分析】

分析:

  • 目标是设计一个高效的抽样检测方案,在尽量少的样本数量下,确保在高信度水平下做出正确的接受或拒收决策。
  • 需要处理两个不同的信度要求,这对样本量的计算提出了挑战。

思路:

  • 贝叶斯抽样优化:可以使用贝叶斯方法结合贝叶斯抽样优化(Bayesian Optimization)来动态调整样本量,以达到所需的信度水平。通过将次品率建模为贝叶斯后验分布,可以逐步减少样本量,同时保证决策的可靠性。
  • 自适应序贯抽样:使用逐步抽样方法,根据初始样本的检测结果动态调整后续样本量,优化检测成本和时间。
  • 蒙特卡洛模拟:模拟大量的抽样检测场景,估计在不同样本量下达成信度要求的概率,找到最小样本量的解决方案。

【解题思路】

目标

设计一个抽样检测方案,以确定是否接受供应商提供的零配件,要求在尽可能少的检测次数下达到两个信度标准:

  1. 在 95% 信度下认定零配件次品率超过标称值(拒收)。
  2. 在 90% 信度下认定零配件次品率不超过标称值(接收)。

建模过程

  1. 定义变量和假设
    • 设次品率为p ,标称次品率为p0=0.10 (即10%)。
    • 抽样样本量为n ,检测出次品的数量为 x。
    • 我们需要对p  进行假设检验,并根据检验结果决定是否接受或拒收。

    2. 抽样检测模型

  • 根据二项分布,我们有
  • 检验假设:

原假设

备择假设(用于拒收的情况)

  • 使用正态近似来简化问题,当 n较大时, 可近似为正态分布:

  • 标准化后的检测统计量为:

3. 检验条件

  • 我们设定显著性水平α  对应的信度为1-α 。
  • 对于拒收情况,信度为 95%,则 α=0.05。
  • 计算临界值:,其中为标准正态分布的逆函数。
  • 对于接收情况,信度为 90%,则 α=0.10。

4. 计算样本量n

    • 拒收的决策规则:若 Z>Z0.05,则拒收。
    • 结合样本量的计算公式,我们得到:

  • 通过展开可以得到对 n 的不等式:

  • 为简化计算,可以迭代求解n。

5. 智能优化算法引入

  • 为了优化样本量 n,引入贝叶斯优化。贝叶斯优化是一种基于高斯过程(Gaussian Process)的黑箱优化方法,可以在不确定的环境下高效找到最优参数。
  • 步骤
    1. 定义目标函数:最小化检测成本 ,其中 c 为单次检测成本。
    2. 目标函数中包含信度约束,使用贝叶斯优化逐步逼近最优的 n。
    3. 通过模拟不同的样本量 n,评估在95%和90%信度下的检测成功率,并调整 n 使得目标函数最小。

6. 贝叶斯优化流程

    • 初始化样本集,随机选择 n0 的样本量进行检测,计算检测成本。
    • 使用高斯过程拟合当前的检测结果。
    • 通过高斯过程预测新的 n,并计算期望改进(Expected Improvement, EI)。
    • 选择使期望改进最大的 n 作为下一步的检测样本量。
    • 更新高斯过程模型,重复迭代,直到找到满足信度约束且成本最低的样本量n* 。

7. 最终方案

  • 通过贝叶斯优化得到的最优样本量 n*,将其应用于实际的检测流程中,以确保在满足信度要求的情况下尽可能减少检测次数。

公式总结

检测统计量:

临界值条件:Z>Z0.05拒收,Z<Z0.10接受

样本量不等式:

目标函数最小化:

Python参考代码】

# 定义检测成本函数
def detection_cost(n, c):return n * c# 定义统计检验函数
def hypothesis_test(n, p0, alpha, x):# 计算标准化的Z统计量p_hat = x / nZ = (p_hat - p0) / np.sqrt(p0 * (1 - p0) / n)# 计算临界值Z_alpha = norm.ppf(1 - alpha)return Z, Z_alpha# 定义目标函数,贝叶斯优化用
def objective(n):n = int(n[0])  # 样本量必须是整数c = 2  # 单次检测成本设为2元(可以根据具体情况调整)p0 = 0.10  # 标称次品率alpha_reject = 0.05  # 拒收信度为95%alpha_accept = 0.10  # 接收信度为90%# 模拟检测x个次品x = binom.rvs(n, p0)  # 假设次品率刚好为标称值# 进行拒收和接收检验Z_reject, Z_alpha_reject = hypothesis_test(n, p0, alpha_reject, x)Z_accept, Z_alpha_accept = hypothesis_test(n, p0, alpha_accept, x)# 判断是否满足信度条件if Z_reject > Z_alpha_reject and Z_accept < Z_alpha_accept:# 若同时满足拒收和接收信度要求,则计算成本cost = detection_cost(n, c)else:# 若不满足信度要求,则设为较高的惩罚成本cost = detection_cost(n, c) + 1000  # 惩罚项return costfrom skopt.space import Real, Integer# 定义优化参数空间
param_space = [Integer(10, 1000, name='n')]# 使用贝叶斯优化进行最小化
result = gp_minimize(objective, param_space, n_calls=50, random_state=0)# 输出最优样本量和最小检测成本
print(f"Optimal sample size: {result.x[0]}")
print(f"Minimum detection cost: {result.fun}")
# 绘制优化过程的收敛情况
plot_convergence(result)
plt.title('Convergence Plot of Bayesian Optimization')
plt.xlabel('Number of Calls')
plt.ylabel('Objective Function Value (Cost)')
plt.grid(True)
plt.show()# 绘制样本量与检测成本的关系
sample_sizes = np.arange(10, 1000, 10)
costs = [objective([n]) for n in sample_sizes]plt.figure(figsize=(10, 6))
plt.plot(sample_sizes, costs, '-o', markersize=4, color='b', label='Detection Cost')
plt.axvline(result.x[0], color='r', linestyle='--', label=f'Optimal Sample Size: {result.x[0]}')
plt.title('Detection Cost vs. Sample Size')
plt.xlabel('Sample Size')
plt.ylabel('Detection Cost')
plt.legend()
plt.grid(True)
plt.show()

相关文章:

【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提

2024年国赛B题解题思路 问题 1: 抽样检测方案设计 【题目分析】 分析&#xff1a; 目标是设计一个高效的抽样检测方案&#xff0c;在尽量少的样本数量下&#xff0c;确保在高信度水平下做出正确的接受或拒收决策。需要处理两个不同的信度要求&#xff0c;这对样本量的计算提…...

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序&#xff08;KNN分类器&#xff09; 文章目录 一、基本原理原理流程举个例子总结 二、实验结果三、核心代码四、代码获取五、总结 智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序&#x…...

使用udp进行通信

UDP chat 头文件 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <time…...

C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作

C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作 一、使用Microsoft.Office.Interop.Excel库 1、通过NuGet包管理器添加引用 按照下图中红框所示进行操作。 需要安装Microsoft.Office.Interop.Excel包 添加Microsoft Office 16.0 Object …...

java重点学习-redis

一.redis 穿透无中生有key&#xff0c;布隆过滤nul隔离 锁与非期解难题。缓存击穿过期key&#xff0c; 雪崩大量过期key&#xff0c;过期时间要随机。 面试必考三兄弟&#xff0c;可用限流来保底。 1.1 Redis的使用场景 根据自己简历上的业务进行回答 缓存穿透、击穿、雪崩、双…...

每日刷题(图论)

P1119 灾后重建 P1119 灾后重建 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路 看数据范围知道需要用到Floyd算法&#xff0c;但是道路是不能直接用的&#xff0c;需要等到连接道路的两个村庄重建好才可以使用&#xff0c;所以这需要按照时间依次加入中转点&#xff0c…...

Requestium - 将Requests和Selenium合并在一起的自动化测试工具

Requests 是 Python 的第三方库&#xff0c;主要用于发送 http 请求&#xff0c;常用于接口自动化测试等。 Selenium 是一个用于 Web 应用程序的自动化测试工具。Selenium 测试直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。 本篇介绍一款将 Requests 和 Seleniu…...

mysql和pg等数据库之间的数据迁移实战分享

mysql和pg等数据库之间的数据迁移是常见的问题&#xff1a;比如一开始使用Oracle&#xff0c;后来想使用mysql&#xff0c;而且需要把Oracle数据库的数据迁移到mysql里面&#xff1b;后期有想使用pg数据库&#xff0c;同时需要把Mysql数据库的数据迁移到pgl里面&#xff0c;等等…...

消息中间件都有哪些

RabbitMQ&#xff1a;这可是一个开源的消息代理软件&#xff0c;也叫消息中间件。它支持多种消息传递协议&#xff0c;可以轻松地在分布式系统中进行可靠的消息传递。 Kafka&#xff1a;Apache Kafka是一个分布式流处理平台&#xff0c;它主要用于处理实时数据流。Kafka的设计初…...

数据结构(3)内核链表

一、内核链表 内核链表是一种在操作系统内核中使用的数据结构&#xff0c;主要用于管理和组织内核对象。它是有头双向链表的一种实现。 内核链表的特点 双向链表: 内核链表的每个节点都包含指向前一个节点和后一个节点的指针&#xff0c;这使得在链表中进行插入和删除操作时更…...

Linux 硬件学习 s3c2440 arm920t蜂鸣器

1.查找手册时钟图&#xff0c;输入12m想要通过pll得到400m的信号 2.对比pll值&#xff0c;找到最近的为405&#xff0c;得到pll中mdiv为127&#xff0c;pdiv为2&#xff0c;sdiv为1 3.想要得到fclk400&#xff0c;hclk100&#xff0c;pclk50&#xff0c;对比分频比例&#xff0…...

提交保存,要做重复请求拦截,避免出现重复保存的问题

**问题&#xff1a;**前端ajax提交数据的时候&#xff0c;当频繁点击的时候&#xff0c;或者两个账号以相同数据创建的时候&#xff0c;会出现问题。 **处理办法&#xff1a;**前端拦截&#xff0c;防止重复提交数据&#xff0c;在上一次请求返回结果之后才允许提交第二次&…...

华为 HCIP-Datacom H12-821 题库 (3)

有需要题库的可以看主页置顶​​​​​​​ 1.运行 OSPF 协议的路由器在交互 DD 报文时&#xff0c;会使用以下哪一个参数选举主从关系&#xff1f; A、接口的 IP 地址 B、接口的 DR 优先级 C、Area ID D、Router ID 答案&#xff1a;D 解析&#xff1a; Router-ID 大的为主&a…...

spring-boot 事件

事件触发时机常用监听器描述ApplicationStartingEvent应用启动时LoggingApplicationListener&#xff1a;决定加载哪个日志系统ApplicationEnvironmentPreparedEvent创建Environment之后BootstrapApplicationListener&#xff1a;加载spring-cloud bootstrap配置文件&#xff1…...

合碳智能 × Milvus:探索化学合成新境界——逆合成路线设计

合碳智能&#xff08;C12.ai&#xff09;成立于2022年&#xff0c;致力于运用AI和具身智能技术&#xff0c;为药物研发实验室提供新一代智能化解决方案&#xff0c;推动实验室从自动化迈向智能化&#xff0c;突破传统实验模式与人员的依赖&#xff0c;解决效率和成本的瓶颈&…...

二分查找 | 二分模板 | 二分题目解析

1.二分查找 二分查找的一个前提就是要保证数组是有序的&#xff08;不准确&#xff09;&#xff01;利用二段性&#xff01; 1.朴素二分模板 朴素二分法的查找中间的值和目标值比较 while(left < right) // 注意是要&#xff1a; < {int mid left (right -left) / 2;…...

uni-app应用更新(Android端)

关于app更新&#xff0c;uni-app官方推荐的是 uni-upgrade-center&#xff0c;看了下比较繁琐&#xff0c;因此这里自己实现检查更新并下载安装的逻辑。 1.界面效果 界面中的弹框和 进度条采用了uView 提供的组件 2.检查更新并下载安装 一、版本信息配置在服务端&#xff0c…...

JavaEE(2):前后端项目之间的交互

现在&#xff0c;在网页中通过超链接&#xff0c;表单就可以向后端发送请求&#xff0c;后端也可以正常响应内容。 以前通过表单访问后端的请求方式称为同步请求 同步请求 当网页与后端交互时&#xff0c;前端不能再进行其他操作 服务器端响应回来的内容&#xff0c;会把整个浏…...

(已开源-CVPR 2024)YOLO-World: Real-Time Open-Vocabulary Object Detection

169期《YOLO-World Real-Time Open-Vocabulary Object Detection》 You Only Look Once (YOLO) 系列检测模型是目前最常用的检测模型之一。然而&#xff0c;它们通常是在预先定义好的目标类别上进行训练&#xff0c;很大程度上限制了它们在开放场景中的可用性。为了解决这一限制…...

Spring6梳理4——SpringIoC容器

以上笔记来源&#xff1a; 尚硅谷Spring零基础入门到进阶&#xff0c;一套搞定spring6全套视频教程&#xff08;源码级讲解&#xff09;https://www.bilibili.com/video/BV1kR4y1b7Qc 目录 4.1 前言 4.2 IoC容器 4.2.1 控制反转(IoC) 4.2.2 依赖注入 4.2.3 IoC容器在Spri…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...