当前位置: 首页 > news >正文

【深度学习 Pytorch】2024年最新版本PyTorch学习指南

引言

2024年,深度学习技术在各个领域取得了显著的进展,而PyTorch作为深度学习领域的主流框架之一,凭借其易用性、灵活性和强大的社区支持,受到了广大研究者和开发者的喜爱。本文将为您带来一份2024年最新版本的PyTorch学习指南,帮助您快速上手并掌握PyTorch的核心功能。

1. 准备工作

1.1 环境配置

  • 操作系统:Windows、Linux或macOS
  • Python版本:Python 3.8及以上
  • 硬件要求:NVIDIA GPU(可选,但推荐)

1.2 安装PyTorch

  1. 访问PyTorch官方网站:https://pytorch.org/get-started/locally/
  2. 根据您的系统环境和需求,选择合适的安装命令
  3. 在命令行中运行安装命令,完成PyTorch的安装

2. PyTorch入门

2.1 张量(Tensor)

张量是PyTorch中的基本数据结构,用于存储和操作数据。

  • 创建张量:torch.tensor(), torch.randn(), torch.zeros(), torch.ones()
  • 张量操作:索引、切片、数学运算、广播机制

2.2 自动微分(Autograd)

自动微分是PyTorch实现梯度计算的核心功能。

  • 计算图:requires_grad_(), backward()
  • 梯度:grad

2.3 神经网络(nn)

使用torch.nn构建神经网络。

  • 模块:nn.Module
  • 层:nn.Linear, nn.Conv2d, nn.ReLU

3. 构建和训练神经网络

3.1 数据加载和处理

使用torch.utils.datatorchvision加载数据。

  • Dataset:自定义数据集
  • DataLoader:批量加载数据

3.2 定义网络结构

import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 6, 3)self.fc1 = nn.Linear(6 * 26 * 26, 10)def forward(self, x):x = F.relu(self.conv1(x))x = x.view(-1, 6 * 26 * 26)x = self.fc1(x)return x

3.3 损失函数和优化器

  • 损失函数:nn.MSELoss, nn.CrossEntropyLoss
  • 优化器:torch.optim.SGD, torch.optim.Adam

3.4 训练循环

for epoch in range(num_epochs):for i, (inputs, labels) in enumerate(train_loader):outputs = net(inputs)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()

4. PyTorch进阶

4.1 GPU加速

  • 数据和模型迁移到GPU:.to(device)
  • 模型训练:在GPU上进行前向传播和反向传播

4.2 模型保存和加载

  • 保存:torch.save(net.state_dict(), 'model.pth')
  • 加载:net.load_state_dict(torch.load('model.pth'))

4.3 并行计算

  • torch.nn.DataParallel
  • torch.nn.parallel.DistributedDataParallel

5. 实践项目

5.1 项目一:手写数字识别

使用MNIST数据集,构建一个简单的卷积神经网络进行手写数字识别。

5.2 项目二:图像分类

使用CIFAR-10数据集,构建一个更复杂的网络进行图像分类。

6. 总结

本文为您提供了2024年最新版本的PyTorch学习指南,从基础知识到进阶技巧,帮助您快速掌握PyTorch。学习深度学习框架的关键在于实践,希望您能在实际项目中不断探索和进步。

相关文章:

【深度学习 Pytorch】2024年最新版本PyTorch学习指南

引言 2024年,深度学习技术在各个领域取得了显著的进展,而PyTorch作为深度学习领域的主流框架之一,凭借其易用性、灵活性和强大的社区支持,受到了广大研究者和开发者的喜爱。本文将为您带来一份2024年最新版本的PyTorch学习指南&a…...

第 1 章:原生 AJAX

原生AJAX 1. AJAX 简介 AJAX 全称为 Asynchronous JavaScript And XML,就是异步的 JS 和 XML。通过 AJAX 可以在浏览器中向服务器发送异步请求,最大的优势:无刷新获取数据。AJAX 不是新的编程语言,而是一种将现有的标准组合在一…...

【代码随想录|贪心part04以后——重叠区间】

代代码随想录|贪心part04以后——重叠区间 一、part041、452.用最少数量的箭引爆气球2、435. 无重叠区间2、763.划分字母区间3、56. 合并区间4、738.单调递增的数字总结python 一、part04 1、452.用最少数量的箭引爆气球 452. 用最少数量的箭引爆气球 class Solution:def f…...

Denodo 连续 4 年获评 Gartner® 数据集成工具魔力象限™ 领导者

Gartner 在其 2023 年数据集成工具魔力象限中连续第四年将 Denodo 评为“领导者”。 Gartner 表示:“由于对数据编织架构、数据产品交付以及支持生成式 AI 的集成数据的需求即将到来,数据集成工具市场正在蓬勃发展。数据和分析领导者应该利用这项研究来…...

WHAT - React 函数与 useMemo vs useCallback

目录 一、介绍useMemo 与 useCallback 的区别示例代码useMemo 示例useCallback 示例 总结 二、当一个函数被作为依赖项useMemo 和 useCallback 的适用情况选择使用 useCallback 或 useMemo总结实际例子 一、介绍 在 React 中,useMemo 和 useCallback 是两个用于性能…...

系统分析师7:数学与经济管理

文章目录 1 图论应用1.1 最小生成树1.2 最短路径1.3 网络与最大流量 2 运筹方法2.1 线性规划2.2 动态规划2.2.1 供需平衡问题2.2.2 任务指派问题 3 预测与决策3.1 不确定型决策分析3.2 风险型决策3.2.1 决策树3.2.2 决策表 4 随机函数5 数学建模 1 图论应用 ①最小生成树 连接…...

一套简约的qt 蓝色qss方案

一套简约的qt 蓝色qss方案 直接使用qss代码 QMenu {background: qlineargradient(x1:0, y1:0, x2:0, y2:1,stop:0 rgba(255, 255, 255, 240),stop:0.2 rgba(255, 255, 255, 200),stop:0.6 rgba(255, 255, 255, 160),stop:1 rgba(255, 255, 255, 120));qproperty-effect: blur…...

OCSP原理及实践

1.OCSP介绍 在PKI体系中,CA机构颁发合法的证书。使用者可以使用CA根证书验证该证书是否被篡改过,但无法从证书文件验证出证书是否被吊销。因此CA机构会通过发布CRL(Certificate Revocation List)来告知所有人,哪些证书…...

前端流程图框架

1、Mermaid: Mermaid 是一个用于绘制流程图、时序图、甘特图等的纯 JavaScript 库。它使用简单的文本语法来定义图表结构,支持多种类型的流程图,易于集成到网页中。 2、Draw.io: Draw.io 是一个在线的流程图绘制工具&#xff0…...

13.6 编写go代码接收webhook的告警发送钉钉

本节重点介绍 : 使用钉钉机器人发送到钉钉群通过alertmanager webhook发送我们自定义的go程序中解析alert对象并拼接钉钉信息发送 需求分析 使用钉钉机器人发送到钉钉群 钉钉机器人发送群消息 文档地址 通过webhook发送我们自定义的go程序中 然后解析发过来的alert&#x…...

codetest

1、寻找身高相近的小朋友 #include <iostream> #include <bits/stdc.h>using namespace std;//寻找身高相近的小朋友//输入&#xff0c;第一行两个整数&#xff0c;分别是小明身高&#xff0c;其他小伙伴个数&#xff0c;第二行是其他小伙伴的身高 //100 10 //95 …...

MyBatis-Plus拦截器接口InnerInterceptor失效?因MyBatis缓存机制而踩的一个深坑

InnerInterceptor 接口是 MyBatis-Plus 提供的一个拦截器接口&#xff0c;用于实现一些常用的 SQL 处理逻辑。例如某个组件运作在多系统的平台上&#xff0c;不同系统需要隔离&#xff0c;于是可以通过这个拦截器接口&#xff0c;给每一条要执行的sql末尾拼接一个AND systemId …...

jmeter之计数器

计数器作用&#xff1a; 对于自增长的数字&#xff0c;可以使用计数器实现 一、添加计数器及参数说明 添加计数器 计数器参数说明 Starting value&#xff1a;给定计数器的起始值、初始值&#xff0c;第一次迭代时&#xff0c;会把该值赋给计数器 递增&#xff1a;每次迭代…...

协议集合(学习笔记)

按照数据的传送方式&#xff0c;通信协议可分为以下2种。 串行通信&#xff1a;串行&#xff08;Serial&#xff09;指的是逐个传输数据位&#xff0c;一次只传输一个位。 并行通信&#xff1a;并行&#xff08;Parallel&#xff09;指的是同时传输多个数据位&#xff0c;一次…...

进程

进程 进程进程的含义PCB块内存空间进程分类&#xff1a;进程的作用进程的状态进程已经准备好执行&#xff0c;所有的资源都已分配&#xff0c;只等待CPU时间进程的调度 进程相关命6.查询进程相关命令1.ps aux2.top3.kill和killall发送一个信号 函数1.fork();2.getpid3.getppid示…...

10款好用的电脑监控软件推荐丨2024年干货整理,赶紧码住!

选择合适的电脑监控软件可以帮助企业和个人更好地管理和保护其计算机资源。以下是10款较为好用的电脑监控软件推荐。 1. 安企神 7天试用体验https://work.weixin.qq.com/ca/cawcde06a33907e60a 简介&#xff1a;安企神是一款专为企业设计的信息安全管理软件&#xff0c;提供…...

【MySQL-24】万字全面解析<索引>——【介绍&语法&性能分析&使用规则】

前言 大家好吖&#xff0c;欢迎来到 YY 滴MySQL系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的《Lin…...

刷题记录(2)

1. HWOD机试 - 模拟消息队列(100) package com.yue.test;import org.junit.Test;import java.util.ArrayList; import java.util.Arrays; import java.util.LinkedList; import java.util.List;/*** Author: 夜雨* Date: 2021-12-08-10:31* Description:* Version 1.0*/ public…...

JVM中的GC过程

堆内存结构&#xff1a;在详细讨论GC过程之前&#xff0c;需要了解JVM堆内存的结构。JVM堆内存通常被分为新生代&#xff08;Young Generation&#xff09;和老年代&#xff08;Old Generation&#xff09;&#xff0c;其中新生代又进一步细分为Eden区&#xff08;Eden Space&a…...

Python实战项目:天气数据爬取+数据可视化(完整代码)_python爬虫实战

一、选题的背景 随着人们对天气的关注逐渐增加&#xff0c;天气预报数据的获取与可视化成为了当今的热门话题&#xff0c;天气预报我们每天都会关注&#xff0c;天气情况会影响到我们日常的增减衣物、出行安排等。每天的气温、相对湿度、降水量以及风向风速是关注的焦点。通过…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...