理解Sigmoid激活函数原理和实现
Sigmoid 激活函数是一种广泛应用于机器学习和深度学习中的非线性函数,特别是在二分类问题中。它的作用是将一个实数值映射到(0, 1)区间,使得输出可以被解释为概率值,这在处理二分类问题时非常有用。
Sigmoid 函数的定义
Sigmoid 函数的数学表达式为:
σ ( x ) = 1 ( 1 + e − x ) σ(x)= \frac{1}{(1+e^{-x})} σ(x)=(1+e−x)1
其中 ( e ) 是自然对数的底数,约等于 2.71828。
特点
- 非线性:Sigmoid 函数是非线性的,这使得神经网络能够学习复杂的模式。
- 输出范围:输出值始终在 0 到 1 之间,这使得它在概率估计中非常有用。
- 平滑连续:Sigmoid 函数是光滑且连续的,这有助于梯度下降算法的稳定性。
缺点
- 梯度消失问题:当输入值非常大或非常小时,Sigmoid 函数的梯度接近于 0,这会导致在神经网络的深层中梯度更新非常缓慢。
- 非零中心化:Sigmoid 函数的输出不是以 0 为中心的,这可能会导致梯度更新过程中的数值不稳定。
函数实现
以下是使用 Python 语言实现 Sigmoid 函数的代码:
import numpy as npdef sigmoid(x):return 1 / (1 + np.exp(-x))# 示例使用
x = np.array([-1, 0, 1])
print("Sigmoid values:", sigmoid(x))
这段代码首先导入了 NumPy 库,用于处理数组和数学运算。sigmoid 函数接受一个数值或数组 x 作为输入,并返回应用 Sigmoid 函数后的输出。
应用
Sigmoid 函数常用于:
- 二分类问题的输出层,作为激活函数。
- 作为隐藏层的激活函数,尽管现在更常用的是 ReLU 系列函数。
了解 Sigmoid 函数的原理和实现对于深入理解神经网络的工作原理是非常重要的。
相关文章:
理解Sigmoid激活函数原理和实现
Sigmoid 激活函数是一种广泛应用于机器学习和深度学习中的非线性函数,特别是在二分类问题中。它的作用是将一个实数值映射到(0, 1)区间,使得输出可以被解释为概率值,这在处理二分类问题时非常有用。 Sigmoid 函数的定义 Sigmoid 函数的数学…...
探秘DevSecOps黄金管道,安全与效率的完美融合
软件应用的安全性已成为企业和用户关注的焦点,DevSecOps作为一种将安全融入开发和运维全过程的理念和实践,旨在消除传统开发模式中安全被后置处理的弊端。DevSecOps黄金管道(Golden Pipeline)是实现这一理念的核心框架,…...
Redis的内存淘汰策略- volatile-lru
volatile-lru 策略简介 在 volatile-lru 策略下,当 Redis 的内存使用达到配置的上限(maxmemory)时,它会优先删除那些设置了过期时间的键,并且选择最近最少使用的键进行删除。LRU 算法的核心思想是,优先删除…...
HTTP和HTTPS的区别?哪一个更适合你的网站?
什么是 HTTP? HTTP(超文本传输协议)(Hypertext Transfer Protocol)它是一组允许网络浏览器与网络服务器(托管网站的计算机)进行通信的规则。 HTTP 使用请求-响应模型。 例如,当你…...
OpenAI SORA团队负责人 通往智能的方式 报告笔记
OpenAI SORA团队负责人 通往智能的方式 报告笔记 这个报告其实是2024年智源大会的主旨报告,OpenAI SORA和DALL-E团队负责人Aditya Ramesh给出的一段有关多模态大模型的报告。我去听了现场,感觉倍受启发,但是感觉很多并不能当场理解ÿ…...
006-Sleuth(Micrometer)+ZipKin分布式链路追踪
这里写目录标题 1 分布式链路追踪概述1.1 为什么会出现这个技术?需要解决哪些问题?1.2 在分布式与微服务场景下需要解决的问题 2 新一代Spring Cloud Sleuth:Micrometer2.1 官网重要提示2.1.1 新一代Sleuth2.1.2 官网2.1.3 说明2.1.3.1 老项目…...
AI模型:追求全能还是专精?-- 之6 语言复杂度类别(Category 0~3 类)和语言功能性类型(Type 0~Ⅲ 型)之2
Q17、我前面说过,语言复杂度的0~3级(Category 0~3)表示了语言的的上下文相关性 : 完全不相关, 单相关的 单词上下文, 双相关的句子上下文 全相关的文章上下文 。我准备翻译为 Context - irrelative /relati…...
20240907 每日AI必读资讯
大疆发布 DJI Neo 掌上 Vlog 无人机! - DJI Neo 是 DJI 迄今最轻、最小的无人机,无需遥控器,掌上起降即可轻松拍出主角大片… |135 克轻巧便携 丨零门槛掌上起降 丨AI 智能跟拍 ,一键成片 丨多种操控,丰富…...
深度学习基础--卷积基础模块
本节主要关注卷积神经网络发展过程中具有里程碑意义的基础模块,了解它们的原理和设计细节 1. 批归一化 在机器学习中,一般会假设模型的输入数据的分布是稳定的。如果这个假设不成立,即模型输入数据的分布发生变化,则称为协变量偏…...
视频智能分析打手机检测算法安防监控打手机检测算法应用场景、算法源码、算法模型介绍
随着智能手机的普及,手机已成为人们生活中不可或缺的一部分。然而,在某些场合,如驾驶、会议、学校课堂等,不当使用手机可能会导致安全隐患或干扰他人。因此,开发出一种能够准确识别并阻止不当使用手机的行为检测算法显…...
6.2图的存储及基本操作
6.2.1顺序存储 邻接矩阵法,用一个一维数组存储图中顶点信息,二维数组存储图中边的信息 无向图 1.无向图的邻接矩阵关于对角线对称,可采用压缩存储 2.边数为e,则邻接矩阵中1为2e; 3.第i行or 第i列非零元素之和恰好为顶点i的度数 4.判断是否有边用0,1 5. 有向图 1.关于对…...
Java语法全解析:掌握基本规则,打造稳固编程基础!
Java基本语法是编写Java程序的核心,它包括了数据类型、运算符、控制结构、类与对象等基本组成部分。这些语法要素共同构成了Java程序的基础框架,掌握它们是进行Java编程的前提。以下是Java基本语法的详细介绍: 数据类型 基本数据类型&#x…...
同时播放多个视频
介绍一款小众的视频播放器,之前有小伙伴找那种可以同时播放多个视频的软件,“恒硕加播放”可以做到这一点,功能不是太多,但是日常播放是足够了。 同时播放多个视频控制多个视频跳到指定进度同时暂停/播放/停止/静音/倍速浏览系统…...
伴奏提取消除人声如何操作?轻松几步玩转音乐世界
你是否梦想着独自演绎一曲,或是进行个性化的混音创作,却又希望摆脱原唱声音的干扰?那么,学会免费伴奏提取就显得尤为关键。 在这篇文章中,我将为你展示四种简单易学的方法,让你能够轻松地从歌曲中提取出伴…...
uniapp二维码生成
uniapp二维码生成 参考文档依赖引入代码html部分生成代码(vue3 hook)使用 参考文档 【博主:ChoneyLove】uniapp中生成二维码及解决微信小程序端问题总结 依赖引入 npm i uqrcodejs代码 html部分 <canvas type"2d" id"…...
Android UID 和 userID 以及 appID
我们知道Android 操作系统是基于Linux内核的,所以Android 的UID 是基于 Linux UID的。 Linux UID Linux 本身就是一个多用户操作系统,每一个用户都会有一个UID,不同UID 之间的资源访问是受限的。 其中,Linux的DAC权限模型&#…...
Kafka的三高设计原理
1.生产者缓存机制--高性能 生产者缓存机制的主要目的是将消息打包,减少网络IO频率 kafka生产者端存在消息累加器RecordAccumulator,它会对每个Partition维护一个双端队列,队列中消息到达一定数量后 或者 到达一定时间后,通过sen…...
生信圆桌x生信宝库:生物信息学资源与工具的终极指南
介绍 生物信息学作为现代生物科学的重要分支,涉及到大量的数据处理、分析和存储工作。随着领域的不断发展,各类生物信息学资源与工具也如雨后春笋般涌现。这些资源涵盖了从基因组数据、蛋白质结构到代谢路径的方方面面,极大地丰富了科研人员的…...
centos7 install rocketmq 宿主机快速搭建RocketMQ单机开发环境_centos7 单机部署rocketmq命令
2214 Jps 2071 BrokerStartup 1947 NamesrvStartup ### 第四步:发送消息测试消费着启动export NAMESRV_ADDRlocalhost:9876 ./tools.sh org.apache.rocketmq.example.quickstart.Consumer 发送测试消息export NAMESRV_ADDRlocalhost:9876 ./tools.sh org.apache.roc…...
2024高教社杯全国大学生数学建模竞赛(A题)深度剖析 _ 建模完整过程+详细思路+代码全解析
问题1解答过程 1.1 螺线运动的基本几何模型 板凳龙的舞动路径为等距螺线。螺线是极坐标中一类常见曲线,其特点是半径随角度线性增加。我们可以用以下极坐标方程描述这条螺线: r ( θ ) p 2 π θ r(\theta) \frac{p}{2\pi} \theta r(θ)2πpθ 其…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
