零成本搞定静态博客——十分钟安装hugo与主题
文章目录
- hugo介绍
- hugo安装与使用
- 方式一:新建站点自建主题
- 方式二:新建站点使用系统推荐的主题
hugo介绍
通过 Hugo 你可以快速搭建你的静态网站,比如博客系统、文档介绍、公司主页、产品介绍等等。相对于其他静态网站生成器来说,Hugo 具备如下特点: 1. 极快的页面编译生成速度。( ~1 ms 每页面) 2. 完全跨平台支持,可以运行在 Mac OS X, Linux, Windows, 以及更多! 3. 安装方便 Installation 4. 本地调试 Usage 时通过 LiveReload自动即时刷新页面。 5. 完全的皮肤支持。
hugo安装与使用
本文使用Chocolatey安装hugo工具。
Chocolatey 是一款 Windows 软件管理自动化工具,它将安装程序、可执行文件、压缩文件和脚本打包成编译好的包。这个应用程序与 SCCM、Puppet、Chef 等集成,并得到了企业信任来管理软件部署。
# 搜索
choco search hugo
# 安装
choco install hugo-extended
# 卸载
choco uninstall hugo-extended
接下来有两种方式
方式一:新建站点自建主题
hugo new site mysite
cd mysite
看一下目录结构
mysite
├─archetypes
├─assets
├─content
├─data
├─i18n
├─layouts
├─static
└─themes
新建主题
# 新建主题,名称为mytheme
hugo new theme mytheme
# 设置主题,名称为mytheme
echo "theme = 'mytheme'" >> hugo.toml
# 启动服务
hugo server
方式二:新建站点使用系统推荐的主题
系统推荐的主题
hugo new site myblog
# 或者
hugo new site myblog --format "yaml"
输出
Congratulations! Your new Hugo site was created in D:\hugoweb\mysite001.Just a few more steps...1. Change the current directory to D:\hugoweb\mysite001.
2. Create or install a theme:- Create a new theme with the command "hugo new theme <THEMENAME>"- Or, install a theme from https://themes.gohugo.io/
3. Edit hugo.toml, setting the "theme" property to the theme name.
4. Create new content with the command "hugo new content <SECTIONNAME>\<FILENAME>.<FORMAT>".
5. Start the embedded web server with the command "hugo server --buildDrafts".
安装主题
cd myblog
# 会在当前目录下生成一个.git文件夹
git init
# 添加子模块
git submodule add https://github.com/adityatelange/hugo-PaperMod.git themes/PaperMod
echo "theme = 'PaperMod'" >> hugo.toml
hugo server
相关文章:
零成本搞定静态博客——十分钟安装hugo与主题
文章目录 hugo介绍hugo安装与使用方式一:新建站点自建主题方式二:新建站点使用系统推荐的主题 hugo介绍 通过 Hugo 你可以快速搭建你的静态网站,比如博客系统、文档介绍、公司主页、产品介绍等等。相对于其他静态网站生成器来说,…...
windows C++ 并行编程-转换使用取消的 OpenMP 循环以使用并发运行时
某些并行循环不需要执行所有迭代。 例如,搜索值的算法可以在找到值后终止。 OpenMP 不提供中断并行循环的机制。 但是,可以使用布尔值或标志来启用循环迭代,以指示已找到解决方案。 并发运行时提供允许一个任务取消其他尚未启动的任务的功能。…...
经验笔记:跨站脚本攻击(Cross-Site Scripting,简称XSS)
跨站脚本攻击(Cross-Site Scripting,简称XSS)经验笔记 跨站脚本攻击(XSS:Cross-Site Scripting)是一种常见的Web应用程序安全漏洞,它允许攻击者将恶意脚本注入到看起来来自可信网站的网页上。当…...
演示:基于WPF的DrawingVisual和谷歌地图瓦片开发的地图(完全独立不依赖第三方库)
一、目的:基于WPF的DrawingVisual和谷歌地图瓦片开发的地图 二、预览 三、环境 VS2022,Net7,DrawingVisual,谷歌地图瓦片 四、主要功能 地图缩放,平移,定位 真实经纬度 显示瓦片信息 显示真实经纬度和经纬线 省市县…...
【C++】static作用总结
文章目录 1. 在函数内(局部静态变量)2. 在类中的静态成员变量3. 在类中的静态成员函数4. 在文件/模块中的静态变量或函数总结 1. 在函数内(局部静态变量) 当 static 用于函数内的局部变量时,该变量的生命周期变为整个…...
视频提取字幕的软件有哪些?高效转录用这些
探索视频的奥秘,从字幕开始!你是否曾被繁复的字幕处理困扰,渴望有一款简单好用的在线免费软件来轻松解锁字幕提取? 告别手动输入的烦恼,我们为你精选了6款视频字幕提取在线免费软件,它们不仅能一键转录&am…...
(4)SVG-path中的椭圆弧A(绝对)或a(相对)
1、概念 表示经过起始点(即上一条命令的结束点),到结束点之间画一段椭圆弧 2、7个参数 rx,ry,x-axis-rotation,large-arc-flag,sweep-flag,x,y (1)和(2&a…...
docker国内镜像源报错解决方案
Job for docker.service failed because the control process exited with error code. See "systemctl status docker.service" and "journalctl -xe" for details. 遇到 Job for docker.service failed because the control process exited with error …...
《C++进阶之路:探寻预处理宏的替代方案》
在 C编程的历程中,预处理宏曾经扮演了重要的角色。然而,随着 C语言的不断发展和编程理念的进步,预处理宏的一些弊端也逐渐显现出来。那么,C中的预处理宏的替代方案有哪些呢?本文将深入探讨这个问题,为你揭示…...
【综合案例】使用鸿蒙编写掘金评论列表案例
效果展示 功能描述 整个页面分为三大模块:顶部 主体【评论列表】 底部。 点击顶部的最新和最热按钮可以进行切换,点击最新按钮的时候主体部分的评论列表是按照时间由近至远进行排列展示,点击最热按钮的时候主体部分的评论列表是按照点赞数…...
【springboot】使用缓存
目录 1. 添加依赖 2. 配置缓存 3. 使用EnableCaching注解开启缓存 4. 使用注解 1. 配置缓存名称 2. 配置缓存的键 3. 移除缓存 5. 运行结果 1. 添加依赖 <!-- springboot缓存--><dependency><groupId>org.springframework.boot</groupId>…...
<Linux> 基础IO
目录 一、C语言文件IO 1. 基础认知 2. stdin、stdout、stderr 3. 文件接口汇总 4. 文件写入 5. 文件读取 6. 标志位传递 7. 总结 二、系统文件IO 1. 文件系统调用open 1.1 pathname : 1.2 flags : 1.3 mode: 1.4 open函数返回值:…...
OpenFeign的使用(一)
OpenFeign的定义 OpenFeign是一个声明式的Web服务客户端,它简化了编写Web服务客户端的过程,使得微服务间的通信更加简单和灵活。它主要作用于帮助开发者方便地调用远程服务,让远程调用像本地方法调用一样简单。 事实上,远程调用的…...
【Python报错已解决】`AttributeError: move_to requires a WebElement`
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 引言:一、问题描述:1.1 报错示例:1.2 报错分析:1.3 解决思路ÿ…...
数据结构(邓俊辉)学习笔记】排序 2——快速排序:性能分析
文章目录 1. 不稳定 就地2. 最好情况 最坏情况3.平均情况 1. 不稳定 就地 以下针对刚才所给出的快速排序算法的第一个版本,就其性能做一分析。 首先很遗憾地发现,这个算法是不稳定的。快速排序算法的不稳定性通过我们刚才所举的那个实例可以清楚地看…...
在postman中使用javascript脚本生成sign签名
大多数线上api接口服务都需要提供签名才可以正常访问。虽然带来了安全,单有时为了快速验证接口的某个功能,就不得不编写代码,计算签名然后再请求。那么,使用postman提供的script功能,是否能实现签名计算功能吗…...
设计模式—2—单例模式
文章目录 一、单例模式概述二、单例模式特点三、示例3.1、基本实现(懒汉式-线程不安全)3.2、基本实现(懒汉式-线程安全)3.3、基本实现(饿汉式) 四、总结 一、单例模式概述 单例模式(Singleton …...
服务器数据恢复—磁盘坏扇区导致raid6阵列崩溃的数据恢复案例
服务器存储数据恢复环境: 一台存储中有一组由12块SAS硬盘组建的raid6磁盘阵列,划分了1个卷,由数台Vmware ESXI主机共享存储。卷中存放了大量的Windows系统虚拟机。这些虚拟机系统盘大小一致,数据盘大小不确定,数据盘都…...
原码、反码、补码
目录 背景: 1.原码 举例: 2.反码: 举例 : 3.补码: 举例: 背景: 在计算机科学中,原码、反码和补码是三种用于表示有符号整数(即包含正负数) 的二进制编码方式。它们各自有其独特的定义和用途&#x…...
排序算法之计数排序详细解读(附带Java代码解读)
计数排序(Counting Sort)是一种非比较型的排序算法,它通过统计每个元素的出现频率,然后计算元素的位置信息,最后将元素放到正确的位置,从而实现排序。计数排序特别适用于元素范围有限的情况,比如…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
