利用KMeans重新计算自己数据集的anchor
在YOLOv5或YOLOv7中,anchors(锚框)是预设的一组不同大小、不同长宽比的边界框,它们用于在图像中的每个网格单元上进行偏移和缩放,以生成目标的候选框。这些anchors的设定对于提高目标检测的效率和准确性至关重要。
并且预先设定的anchors是根据COCO数据集中目标的大小和形状分布来设定的,能够覆盖大多数目标可能的尺寸和形状。
但是在训练我们自己的数据集时,若数据集内的目标与COCO数据集内的目标尺寸分别差异较大,长宽比较大时,根据自己的数据集聚类anchor可能会更直接有效。
聚类求解方法:
以YOLOv7为例,YOLOv7中已经实现了相关聚类算法来从数据集中自动学习anchors。是通过迭代优化,找到一组能够最好地代表数据集中目标尺寸和形状的anchors。
在YOLOv7项目的根目录新建calc_anchor.py,将下方代码复制其中:
import utils.autoanchor as autoAC# 对数据集重新计算 anchors
new_anchors = autoAC.kmean_anchors('D:\\yolov7-main\\data\\bubbleplume.yaml', 9, 320, 8.0, 1000, True)
print(new_anchors)
参数:path:数据集 *.yaml,或已加载数据集的路径n:锚点数量img_size:训练时使用的图像大小thr:用于训练的锚标签 临界值超参数 hyp['anchor_t'],默认值=4.0gen:使用遗传算法演化锚点的代数verbose:是否打印所有结果返回:k:均值进化锚点
运行程序后便输出自己数据集的9对anchors

相关文章:
利用KMeans重新计算自己数据集的anchor
在YOLOv5或YOLOv7中,anchors(锚框)是预设的一组不同大小、不同长宽比的边界框,它们用于在图像中的每个网格单元上进行偏移和缩放,以生成目标的候选框。这些anchors的设定对于提高目标检测的效率和准确性至关重要。 并…...
分类任务实现模型集成代码模版
分类任务实现模型(投票式)集成代码模版 简介 本实验使用上一博客的深度学习分类模型训练代码模板-CSDN博客,自定义投票式集成,手动实现模型集成(投票法)的代码。最后通过tensorboard进行可视化࿰…...
从Milvus迁移DashVector
本文档演示如何从Milvus将Collection数据全量导出,并适配迁移至DashVector。方案的主要流程包括: 首先,升级Milvus版本,目前Milvus只有在最新版本(v.2.3.x)中支持全量导出其次,将Milvus Collection的Schema信息和数据…...
彻底改变计算机视觉的 Vision Transformer (ViT) 综合指南(视觉转换器终极指南)
欢迎来到雲闪世界。大家好!对于那些还不认识我的人,我叫 Francois,我是 Meta 的研究科学家。我热衷于解释先进的 AI 概念并使其更容易理解。 今天,让我们深入探讨计算机视觉领域最重要的贡献之一:Vision Transformer&…...
vue3 v-bind=“$attrs“ 的一些理解,透传 Attributes相关说明及事例说明
1、可能小伙伴们经常会在自己的项目中看到v-bind"$attrs",这个一般是在自定义组件中看到。 比如: <template><BasicModalv-bind"$attrs"register"registerModal":title"getTitle"ok"handleSubm…...
鸿蒙开发基础知识-页面布局【第四篇】
1.类型转换 2.交互点击事件 3.状态管理 4.forEch渲染和右上角图标 测试案例 Stack 层叠布局一个生肖卡 5. 动画展示图片 6. Swiper 轮播组件的基本使用 图片等比显示 aspectRatio()...
用CSS实现前端响应式布局
一、响应式布局的重要性 随着移动设备的普及,越来越多的用户通过手机、平板电脑等设备访问网页。如果网页不能适应不同的屏幕尺寸,就会出现布局混乱、内容显示不全等问题,严重影响用户体验。响应式布局可以确保网页在各种设备上都能保持美观…...
【docker】docker启动sqlserver
sqlserver-docker官方地址 # sqlserver不是从docker的中央仓库拉取的,而是从ms的仓库拉取的。 docker pull mcr.microsoft.com/mssql/server:2019-latest# 宿主机即docker程序运行的linux服务器 docker run -d \ --user root \ --name mssql2019 \ -e "ACCEPT…...
Python爬虫01
requests模块 文档 安装 pip/pip3 install requestsresponse.text 和 response.content的区别 1.response.text 等价于 response.content.decode("推测出的编码字符集")response.text 类型:str 编码类型:requests模块自动根据Http头部对…...
关于vue项目启动报错Error: error:0308010C:digital envelope routines::unsupported
周五啦,总结一下这周遇到的个别问题吧,就是关于启动项目的时候其他的东西都准备好了,执行命令后报错Error: error:0308010C:digital envelope routines::unsupported 这里看一下我标注的地方,然后总结一下就不难发现问题所在 查看…...
随笔1:数学建模与数值计算
目录 1.1 矩阵运算 1.2 基本数学函数 1.3 数值求解 数学建模与数值计算 是将实际问题通过数学公式和模型进行描述,并通过计算获得模型解的过程。这是数学建模中最基本也是最重要的环节之一。下面是详细的知识点讲解及相应的MATLAB代码示例。 1.1 矩阵运算 知识点…...
SDN架构详解
目录 1)经典的IP网络-分布式网络 2)经典网络面临的问题 3)SDN起源 4)OpenFlow基本概念 5)Flow Table简介 6)SDN的网络架构 7)华为SDN网络架构 8)传统网络 vs SDN 9…...
platform框架
platform框架 注册设备进入总线platform_device_register函数 注册驱动进入总线platform_driver_register函数 注册设备进入总线 platform_device_register函数 int platform_device_register(struct platform_device *pdev) struct platform_device {const char * name; 名…...
零成本搞定静态博客——十分钟安装hugo与主题
文章目录 hugo介绍hugo安装与使用方式一:新建站点自建主题方式二:新建站点使用系统推荐的主题 hugo介绍 通过 Hugo 你可以快速搭建你的静态网站,比如博客系统、文档介绍、公司主页、产品介绍等等。相对于其他静态网站生成器来说,…...
windows C++ 并行编程-转换使用取消的 OpenMP 循环以使用并发运行时
某些并行循环不需要执行所有迭代。 例如,搜索值的算法可以在找到值后终止。 OpenMP 不提供中断并行循环的机制。 但是,可以使用布尔值或标志来启用循环迭代,以指示已找到解决方案。 并发运行时提供允许一个任务取消其他尚未启动的任务的功能。…...
经验笔记:跨站脚本攻击(Cross-Site Scripting,简称XSS)
跨站脚本攻击(Cross-Site Scripting,简称XSS)经验笔记 跨站脚本攻击(XSS:Cross-Site Scripting)是一种常见的Web应用程序安全漏洞,它允许攻击者将恶意脚本注入到看起来来自可信网站的网页上。当…...
演示:基于WPF的DrawingVisual和谷歌地图瓦片开发的地图(完全独立不依赖第三方库)
一、目的:基于WPF的DrawingVisual和谷歌地图瓦片开发的地图 二、预览 三、环境 VS2022,Net7,DrawingVisual,谷歌地图瓦片 四、主要功能 地图缩放,平移,定位 真实经纬度 显示瓦片信息 显示真实经纬度和经纬线 省市县…...
【C++】static作用总结
文章目录 1. 在函数内(局部静态变量)2. 在类中的静态成员变量3. 在类中的静态成员函数4. 在文件/模块中的静态变量或函数总结 1. 在函数内(局部静态变量) 当 static 用于函数内的局部变量时,该变量的生命周期变为整个…...
视频提取字幕的软件有哪些?高效转录用这些
探索视频的奥秘,从字幕开始!你是否曾被繁复的字幕处理困扰,渴望有一款简单好用的在线免费软件来轻松解锁字幕提取? 告别手动输入的烦恼,我们为你精选了6款视频字幕提取在线免费软件,它们不仅能一键转录&am…...
(4)SVG-path中的椭圆弧A(绝对)或a(相对)
1、概念 表示经过起始点(即上一条命令的结束点),到结束点之间画一段椭圆弧 2、7个参数 rx,ry,x-axis-rotation,large-arc-flag,sweep-flag,x,y (1)和(2&a…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
goreplay
1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具,可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长,测试它所需的工作量也会呈指数级增长。GoRepl…...
Qt的学习(二)
1. 创建Hello Word 两种方式,实现helloworld: 1.通过图形化的方式,在界面上创建出一个控件,显示helloworld 2.通过纯代码的方式,通过编写代码,在界面上创建控件, 显示hello world; …...
