当前位置: 首页 > news >正文

2.1概率统计的世界

欢迎来到概率统计的世界!在量化交易中,概率统计是至关重要的工具。通过理解概率,我们可以用数学的方法来描述市场行为,预测未来走势,并制定交易策略。让我们一起从基础概念开始,逐步深入,揭开概率统计的神秘面纱。

1.1 概率论的基本概念与应用

概率是用来描述某个事件发生可能性的数值。例如,丢一枚硬币,正面朝上的概率是50%。这个概率可以用数学公式表示为:
在这里插入图片描述

在量化交易中,我们常常需要计算各种事件的概率,例如股票价格在某一天上涨的概率,或者一个策略在未来一个月内盈利的概率。了解这些概率,有助于我们更科学地做出交易决策。

1.2 随机变量与概率分布的特性

随机变量是一种数值化的随机现象。随机变量可以是离散的,也可以是连续的。

  • 离散随机变量:取值是有限或可数的,比如硬币的正反面,或骰子的1到6。
  • 连续随机变量:取值是无限且连续的,比如股票价格可以是20.01元、20.015元,理论上可以精确到无穷小数位。

概率分布是用来描述随机变量可能取到每个值的概率的函数。掌握概率分布的知识,有助于我们在量化交易中进行有效的建模和预测。以下是一些常用的概率分布:

  1. 0-1分布(也称伯努利分布):描述只有两个可能结果的单次试验,比如丢一次硬币,正面记为1,反面记为0。0-1分布是二项分布的基础。

  2. 二项分布:描述多次独立重复试验中某个特定结果出现的次数。比如,连续丢10次硬币,计算正面出现的次数,这就可以用二项分布来描述。

  3. 泊松分布:用于描述在固定时间段内,某个事件发生的次数。泊松分布适合那些事件发生的概率较小,但试验次数很多的情况。比如,一个网站每天收到的用户留言数量,或者某股票在一天内涨停的次数。泊松分布是二项分布在事件发生概率很小且试验次数很大时的极限情况。

  4. 指数分布:描述事件发生时间间隔的分布。常用于分析没有记忆性的随机事件,比如电话客服中心每分钟接到的电话数量,或者股票价格突破某一水平的时间间隔。

  5. 正态分布:数据集中在均值附近,呈对称分布。均值两侧的分布概率是相等的。
    正态分布是最常见的概率分布之一,也叫做钟形曲线,因为它的形状像一口钟。正态分布描述了很多自然现象,比如大多数人的身高分布、考试成绩分布等。在量化交易中,假设资产收益服从正态分布有助于我们进行风险管理和投资组合优化。

这些概率分布在量化交易中非常有用,因为它们帮助我们建模和预测金融市场中的不确定性。

1.3 平均值、方差与标准差

掌握了概率分布,我们接下来要了解几个关键的统计量,它们可以帮助我们分析数据的特性。

  • 平均值:数据的中心位置,表示所有数据点的平均水平。例如,你买了5次苹果,价格分别是2元、3元、2.5元、4元、3.5元,那么平均价格就是:
    在这里插入图片描述

  • 方差:表示数据的离散程度,即数据点与平均值的偏离程度。方差的计算公式是所有数据点与平均值的差的平方的平均数:
    在这里插入图片描述

  • 标准差:方差的平方根,表示数据的波动范围。标准差越大,数据越分散;标准差越小,数据越集中。

这些统计量在量化交易中非常重要,它们帮助我们理解市场的波动性和投资的风险。

1.4 假设检验在量化交易中的作用

假设检验是统计学中用于验证假设的一种方法。它帮助我们判断一个假设是否有足够的证据支持或拒绝。

让我们用一个简单的例子来理解假设检验。

假设你认为一只股票每天上涨的概率是50%。为了验证这个假设,你决定观察该股票在连续20个交易日中的表现。结果显示,在这20天中,该股票有16天都上涨了。你可能会想:“这只股票真的每天上涨的概率是50%吗?”

为了验证这一点,我们可以进行假设检验:

  1. 提出假设

    • 零假设(H0):股票每天上涨的概率是50%(p = 0.5)。
    • 备择假设(H1):股票每天上涨的概率不是50%(p ≠ 0.5)。
  2. 选择检验方法:根据数据的类型和假设,选择合适的统计检验方法。在这个例子中,我们可以使用二项检验,因为我们在统计一个二项分布(上涨或不上涨)。

  3. 计算检验统计量:根据数据计算一个统计量,比如在这20天中股票上涨的天数。

  4. 确定显著性水平:通常选择5%或1%作为显著性水平,用来判断是否拒绝零假设。

  5. 做出决策:根据计算出的统计量和显著性水平,判断是否拒绝零假设。如果你的结果在零假设下出现的概率非常低(比如连续20天有16天上涨),你就会怀疑零假设不成立。

在量化交易中,假设检验帮助我们评估交易策略的有效性。例如,我们可以测试一个策略是否在长时间内真的能够稳定获利,而不是偶然的运气。

通过这一节的学习,你已经了解了概率分布的基本概念,包括0-1分布、二项分布、泊松分布和指数分布,以及如何使用假设检验来判断一个假设的有效性。这些知识是量化交易中不可或缺的工具,能帮助你更科学地分析市场数据和制定策略。希望这些内容能为你的量化交易之旅增添更多的信心!准备好了吗?让我们继续探索数学的奥秘!

相关文章:

2.1概率统计的世界

欢迎来到概率统计的世界!在量化交易中,概率统计是至关重要的工具。通过理解概率,我们可以用数学的方法来描述市场行为,预测未来走势,并制定交易策略。让我们一起从基础概念开始,逐步深入,揭开概…...

SpringBoot使用QQ邮箱发送邮件

1.开启POP3/IMAP/SMTP/Exchange/CardDAV/CalDAV服务 设置 -> 账号 -> POP3/IMAP/SMTP/Exchange/CardDAV/CalDAV服务 获取授权码 SpringBoot依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter&l…...

使用 OpenCV 和 NumPy 进行图像处理:HSV 范围筛选实现PS抠图效果

使用 OpenCV 和 NumPy 进行图像处理&#xff1a;HSV 范围筛选实现PS抠图效果 在计算机视觉和图像处理领域&#xff0c;OpenCV 是一个非常强大的库&#xff0c;能够帮助我们执行各种图像操作。在这篇博客中&#xff0c;我们将通过一个简单的示例演示如何使用 OpenCV 和 NumPy 来…...

IIS中间件

中间件 中间件是一类软件&#xff0c;为应用程序、服务和组件提供一个通用的服务层。 主要功能 通信&#xff1a;提供通信框架&#xff0c;帮助不同系统与应用之间进行数据交换和通信 事务管理、资源管理 安全服务&#xff1a;提供认证、授权、加密等安全策略 数据访问&a…...

BMP280气压传感器详解(STM32)

目录 一、介绍 二、传感器原理 1.原理图 2.引脚描述 3.传感器数据获取流程 三、程序设计 main.c文件 bmp280.h文件 bmp280.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 BMP280是一款基于博世公司APSM工艺的小封装低功耗数字复合传感器&#xff0c;它可以测…...

DWPD指标:为何不再适用于大容量SSD?

固态硬盘&#xff08;Solid State Drives, SSD&#xff09;作为计算机行业中最具革命性的技术之一&#xff0c;凭借其更快的读写速度、增强的耐用性和能效&#xff0c;已经成为大多数用户的首选存储方案。然而&#xff0c;如同任何其他技术一样&#xff0c;SSD也面临自身的挑战…...

路由器的固定ip地址是啥意思?固定ip地址有什么好处

‌在当今数字化时代&#xff0c;‌路由器作为连接互联网的重要设备&#xff0c;‌扮演着举足轻重的角色。‌其中&#xff0c;‌路由器的固定IP地址是一个常被提及但可能让人困惑的概念。‌下面跟着虎观代理小二一起将深入探讨路由器的固定IP地址的含义&#xff0c;‌揭示其背后…...

Java——踩坑Arrays.asList()

坑1&#xff1a;不能直接使用 Arrsys.asList() 来转换基本类型数据 public static void test1(){// 1、不能直接使用asList来转换基本类型数组int[] arr {1, 2, 3};List list Arrays.asList(arr);System.out.printf("list:%s size:%s class:%s", list, list.size(…...

前缀列表(ip-prefix)配置

一. 实验简介 本来前缀列表是要和访问控制列表放在一起讲的&#xff0c;但是这里单拎出来是为了更详细的讲解两者的区别 1.前缀列表针对IP比访问控制更加灵活。 2.前缀列表在后面被引用时是无法对数据包进行过滤的 实验拓扑 二. 实验目的 R4路由器中只引入子网LoopBack的…...

每日OJ_牛客_电话号码(简单哈希模拟)

目录 牛客_电话号码&#xff08;简单哈希模拟&#xff09; 解析代码 牛客_电话号码&#xff08;简单哈希模拟&#xff09; 电话号码__牛客网 解析代码 #include <iostream> #include <unordered_map> #include <set> #include <string> using name…...

鸿蒙轻内核M核源码分析系列十二 事件Event

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 轻内核M核源码分析系列一 数据结构-双向循环链表 轻内核M核源码分析系列二 数据结构-任务就绪队列 鸿蒙轻内核M核源码分析系列三 数据结构-任务排序链表 轻…...

基于 RocketMQ 的云原生 MQTT 消息引擎设计

作者&#xff1a;沁君 概述 随着智能家居、工业互联网和车联网的迅猛发展&#xff0c;面向 IoT&#xff08;物联网&#xff09;设备类的消息通讯需求正在经历前所未有的增长。在这样的背景下&#xff0c;高效和可靠的消息传输标准成为了枢纽。MQTT 协议作为新一代物联网场景中…...

AWVS/Acunetix Premium V24.8

前言 Acunetix Premium 是一款网络安全 漏洞扫描 工具&#xff0c;主要用于自动化网站漏洞扫描和管理。它的特点包括深度扫描和发现各种类型的漏洞&#xff08;如 SQL 注入和跨站脚本&#xff09;&#xff0c;支持多种技术和平台&#xff0c;提供详尽的报告和修复建议&#xf…...

[数据集][目标检测]灭火器检测数据集VOC+YOLO格式3255张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;3255 标注数量(xml文件个数)&#xff1a;3255 标注数量(txt文件个数)&#xff1a;3255 标注…...

【技术警报】Redis故障启示录:当主节点宕机,如何避免数据“雪崩”?

在高并发的互联网世界中&#xff0c;Redis作为一个高性能的键值存储系统&#xff0c;常被用于缓存、消息队列等场景&#xff0c;为应用提速增效。然而&#xff0c;技术的光芒背后也隐藏着潜在的危机——今天&#xff0c;我们就来探讨一个真实发生的案例&#xff1a;Redis主节点…...

【基础】Three.js加载纹理贴图、加载外部gltf格式文件

1. 模型使用纹理贴图 const geometry new THREE.BoxGeometry(10, 10, 10);const textureLoader new THREE.TextureLoader(); // 创建纹理贴图加载器const texture textureLoader.load("/crate.gif"); // 加载纹理贴图const material new THREE.MeshLambertMater…...

【区块链 + 人才服务】FISCO BCOS 区块链实训和管理平台 | FISCO BCOS应用案例

中博数科 FISCO BCOS 区块链实训和管理平台主要应用于区块链领域的教育和实训&#xff0c;目的是为学生、教师等用户 提供高效的区块链技术学习和实践体验&#xff0c;同时也为学校提供了一套完整的区块链解决方案。 该平台提供了一套完整的区块链课程体系&#xff0c;包括理论…...

联众优车持续加大汽车金融服务投入与创新,赋能汽车消费新生态

近年来&#xff0c;中国汽车消费市场呈现出蓬勃发展的态势&#xff0c;而汽车金融服务作为降低购车门槛、优化购车体验的重要手段&#xff0c;正日益受到市场的青睐。《2023中国汽车消费趋势调查报告》显示&#xff0c;相较于前一年&#xff0c;今年选择汽车金融服务的市场消费…...

基于yolov8的西红柿检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的西红柿检测系统是一种利用深度学习技术的创新应用&#xff0c;旨在通过自动化和智能化手段提高西红柿成熟度检测的准确性和效率。该系统采用YOLOv8算法&#xff0c;该算法是深度学习领域中的先进目标检测模型&#xff0c;具备实时检测和多目标识别的…...

PHP轻量级高性能HTTP服务框架 - webman

摘要 webman 是一款基于 workerman 开发的高性能 HTTP 服务框架。webman 用于替代传统的 php-fpm 架构&#xff0c;提供超高性能可扩展的 HTTP 服务。你可以用 webman 开发网站&#xff0c;也可以开发 HTTP 接口或者微服务。 除此之外&#xff0c;webman 还支持自定义进程&am…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...