当前位置: 首页 > news >正文

基于yolov8的西红柿检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】

基于YOLOv8的西红柿检测系统是一种利用深度学习技术的创新应用,旨在通过自动化和智能化手段提高西红柿成熟度检测的准确性和效率。该系统采用YOLOv8算法,该算法是深度学习领域中的先进目标检测模型,具备实时检测和多目标识别的能力。YOLOv8在YOLOv4的基础上进行了改进和优化,提升了检测性能和速度,使其更适用于现代农业中的快速检测需求。

该系统通过收集大量不同成熟度的西红柿图像数据,并进行预处理和训练,使YOLOv8模型能够准确识别和定位图像中的西红柿。在实际应用中,用户可以通过输入待检测的西红柿图像,系统即可自动完成检测和识别工作,并将检测结果以可视化的方式呈现给用户。

基于YOLOv8的西红柿检测系统不仅提高了检测的准确性和效率,还降低了人力成本和时间成本,为农业生产提供了智能化解决方案。此外,该系统还具有广泛的应用前景,可用于果蔬加工和销售环节中的质量控制,以及科研领域的数据分析和研究。综上所述,基于YOLOv8的西红柿检测系统是现代农业中一项具有重要意义的技术创新。

【效果展示】

【测试环境】

windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.2.70

【模型可以检测出类别】

tomato

【训练信息】

参数
训练集图片数2362
验证集图片数156
训练map99.5%
训练精度(Precision)99.8%
训练召回率(Recall)100.0%

【相关数据集】

如需要更高精度检测可以尝试用下面数据集重新训练模型

https://download.csdn.net/download/FL1623863129/87862151

【部分实现源码】

class Ui_MainWindow(QtWidgets.QMainWindow):signal = QtCore.pyqtSignal(str, str)def setupUi(self):self.setObjectName("MainWindow")self.resize(1280, 728)self.centralwidget = QtWidgets.QWidget(self)self.centralwidget.setObjectName("centralwidget")self.weights_dir = './weights'self.picture = QtWidgets.QLabel(self.centralwidget)self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))self.picture.setStyleSheet("background:black")self.picture.setObjectName("picture")self.picture.setScaledContents(True)self.label_2 = QtWidgets.QLabel(self.centralwidget)self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))self.label_2.setObjectName("label_2")self.cb_weights = QtWidgets.QComboBox(self.centralwidget)self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))self.cb_weights.setObjectName("cb_weights")self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)self.label_3 = QtWidgets.QLabel(self.centralwidget)self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))self.label_3.setObjectName("label_3")self.hs_conf = QtWidgets.QSlider(self.centralwidget)self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))self.hs_conf.setProperty("value", 25)self.hs_conf.setOrientation(QtCore.Qt.Horizontal)self.hs_conf.setObjectName("hs_conf")self.hs_conf.valueChanged.connect(self.conf_change)self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))self.dsb_conf.setMaximum(1.0)self.dsb_conf.setSingleStep(0.01)self.dsb_conf.setProperty("value", 0.25)self.dsb_conf.setObjectName("dsb_conf")self.dsb_conf.valueChanged.connect(self.dsb_conf_change)self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))self.dsb_iou.setMaximum(1.0)self.dsb_iou.setSingleStep(0.01)self.dsb_iou.setProperty("value", 0.45)self.dsb_iou.setObjectName("dsb_iou")self.dsb_iou.valueChanged.connect(self.dsb_iou_change)self.hs_iou = QtWidgets.QSlider(self.centralwidget)self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))self.hs_iou.setProperty("value", 45)self.hs_iou.setOrientation(QtCore.Qt.Horizontal)self.hs_iou.setObjectName("hs_iou")self.hs_iou.valueChanged.connect(self.iou_change)self.label_4 = QtWidgets.QLabel(self.centralwidget)self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))self.label_4.setObjectName("label_4")self.label_5 = QtWidgets.QLabel(self.centralwidget)self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))self.label_5.setObjectName("label_5")self.le_res = QtWidgets.QTextEdit(self.centralwidget)self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))self.le_res.setObjectName("le_res")self.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(self)self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))self.menubar.setObjectName("menubar")self.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(self)self.statusbar.setObjectName("statusbar")self.setStatusBar(self.statusbar)self.toolBar = QtWidgets.QToolBar(self)self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)self.toolBar.setObjectName("toolBar")self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)self.actionopenpic = QtWidgets.QAction(self)icon = QtGui.QIcon()icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionopenpic.setIcon(icon)self.actionopenpic.setObjectName("actionopenpic")self.actionopenpic.triggered.connect(self.open_image)self.action = QtWidgets.QAction(self)icon1 = QtGui.QIcon()icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action.setIcon(icon1)self.action.setObjectName("action")self.action.triggered.connect(self.open_video)self.action_2 = QtWidgets.QAction(self)icon2 = QtGui.QIcon()icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action_2.setIcon(icon2)self.action_2.setObjectName("action_2")self.action_2.triggered.connect(self.open_camera)self.actionexit = QtWidgets.QAction(self)icon3 = QtGui.QIcon()icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionexit.setIcon(icon3)self.actionexit.setObjectName("actionexit")self.actionexit.triggered.connect(self.exit)self.toolBar.addAction(self.actionopenpic)self.toolBar.addAction(self.action)self.toolBar.addAction(self.action_2)self.toolBar.addAction(self.actionexit)self.retranslateUi()QtCore.QMetaObject.connectSlotsByName(self)self.init_all()

【使用步骤】

使用步骤:
(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码
yolov8n.onnx模型(提供pytorch模型和所有训练日志)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)

【源码下载地址】
https://download.csdn.net/download/FL1623863129/89716473

相关文章:

基于yolov8的西红柿检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的西红柿检测系统是一种利用深度学习技术的创新应用,旨在通过自动化和智能化手段提高西红柿成熟度检测的准确性和效率。该系统采用YOLOv8算法,该算法是深度学习领域中的先进目标检测模型,具备实时检测和多目标识别的…...

PHP轻量级高性能HTTP服务框架 - webman

摘要 webman 是一款基于 workerman 开发的高性能 HTTP 服务框架。webman 用于替代传统的 php-fpm 架构,提供超高性能可扩展的 HTTP 服务。你可以用 webman 开发网站,也可以开发 HTTP 接口或者微服务。 除此之外,webman 还支持自定义进程&am…...

Python实现人工鱼群算法

博客目录 引言 什么是人工鱼群算法(AFSA)?人工鱼群算法的应用场景为什么使用人工鱼群算法? 人工鱼群算法的原理 人工鱼群算法的基本概念人工鱼的三种行为模式人工鱼群算法的流程人工鱼群算法的特点与优势 人工鱼群算法的实现步骤…...

【网络安全】密码学概述

1. 密码学概述 1.1 定义与目的 密码学是一门研究信息加密和解密技术的科学,其核心目的是确保信息在传输和存储过程中的安全性。密码学通过加密算法将原始信息(明文)转换成难以解读的形式(密文),只有拥有正…...

Java连接SSH

使用JSch库建立SSH连接 JSch是一个纯Java实现的SSH2库&#xff0c;可以用来建立安全的SSH连接。要使用JSch&#xff0c;首先需要将其依赖项添加到您的项目中。如果您使用Maven作为构建工具&#xff0c;可以在pom.xml文件中添加如下依赖&#xff1a; <dependency><gr…...

怎么取消MAC 输入首字母总是自动变大写

一、打开系统偏好设置 点击屏幕左上角的苹果图标&#xff08;&#xff09;。 在弹出的菜单中选择“系统偏好设置”。偏好设置”。二、进入键盘设置 在系统偏好设置窗口中&#xff0c;找到并点击“键盘”选项。三、调整文本输入设置 在键盘设置窗口中&#xff0c;点击“文本…...

【无损检测】基于用深度学习的工业超声B-Scan 图像中的焊缝缺陷

Automated Weld Defect Detection in Industrial Ultrasonic B-Scan Images Using Deep Learning Abstract: 自动超声波检测&#xff08;AUT&#xff09;是一种无损检测&#xff08;NDT&#xff09;方法&#xff0c;广泛应用于具有重要经济意义的行业。为了确保对独有的 AUT 数…...

iOS——GCD再学习

GCD 使用GCD好处&#xff0c;具体如下&#xff1a; GCD 可用于多核的并行运算&#xff1b;GCD 会自动利用更多的 CPU 内核&#xff08;比如双核、四核&#xff09;&#xff1b;GCD 会自动管理线程的生命周期&#xff08;创建线程、调度任务、销毁线程&#xff09;&#xff1b…...

SVD降维

文章目录 一、SVD降维的基本原理二、SVD降维的步骤三、SVD降维的优点四、SVD降维的应用五、代码应用六、SVD降维的局限性 一、SVD降维的基本原理 SVD是线性代数中的一种技术&#xff0c;它将一个矩阵A分解为三个矩阵的乘积&#xff1a;A UΣV^T。其中&#xff0c;U和V是正交矩…...

剖析Cookie的工作原理及其安全风险

Cookie的工作原理主要涉及到HTTP协议中的状态管理。HTTP协议本身是无状态的&#xff0c;这意味着每次请求都是独立的&#xff0c;服务器不会保留之前的请求信息。为了在无状态的HTTP协议上实现有状态的会话&#xff0c;引入了Cookie机制。 1. Cookie定义 Cookie&#xff0c;也…...

规控面试复盘

目录 前言 一、京东方 1、CPP和C的区别是什么? 2、讲一下的ROS的话题通信 二、Momenta(泊车部门实习面试) 1、MPC的预测时间步是多少? 2、MPC的代价函数考虑的是什么? 三、九识 1、智能指针有哪些优缺点? 优点: 缺点: 2、Protobuf的数据传输效率为什么更高…...

Elastic Stack--ES集群加密及Kibana的RBAC实战

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 学习B站博主教程笔记&#xff1a; 最新版适合自学的ElasticStack全套视频&#xff08;Elk零基础入门到精通教程&#xff09;Linux运维必备—Elastic…...

【开源免费】基于SpringBoot+Vue.JS图书个性化推荐系统(JAVA毕业设计)

本文项目编号 T 015 &#xff0c;文末自助获取源码 \color{red}{T015&#xff0c;文末自助获取源码} T015&#xff0c;文末自助获取源码 目录 一、系统介绍1.1 业务分析1.2 用例设计1.3 时序设计 二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究…...

STM32(F103ZET6)第十九课:FreeRtos的移植和使用

目录 需求一、FreeRtos简介二、移植FreeRtos1.复制代码2.内存空间分配和内核相关接口3.FreeRtosConfig4.添加到工程中三、任务块操作1.任务四种状态2.创建任务过程 需求 1.将FreeRtos&#xff08;嵌入式实时操作系统&#xff09;移植到STM32中。 2.在该系统中实现任务的创建、…...

索尼的Web3蓝图:从技术创新到现实应用的全方位布局

近年来&#xff0c;随着区块链技术和加密资产的迅猛发展&#xff0c;全球科技巨头纷纷投入其中&#xff0c;力图在Web3浪潮中占据一席之地。作为传统科技行业的巨头&#xff0c;索尼(Sony)也不甘落后&#xff0c;积极推动其Web3战略布局&#xff0c;展现出其在新兴领域的强烈野…...

探索Java中的分布式消息队列与事件总线:架构、实现与最佳实践

引言 在现代分布式系统中&#xff0c;消息队列和事件总线已经成为实现松耦合、高扩展性和高可用性架构的关键组件。无论是微服务架构、事件驱动架构&#xff0c;还是实时数据处理&#xff0c;消息队列和事件总线都扮演着至关重要的角色。本文将深入探讨Java中的分布式消息队列…...

HTML零基础教程(超详细)

一、什么是HTML HTML&#xff0c;全称超文本标记语言&#xff08;HyperText Markup Language&#xff09;&#xff0c;是一种用于创建网页的标准标记语言。它通过一系列标签来定义网页的结构、内容和格式。HTML文档是由HTML元素构成的文本文件&#xff0c;这些元素包括标题、段…...

011.Python爬虫系列_bs4解析

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数…...

django摄影竞赛小程序论文源码调试讲解

2系统关键技术及工具简介 系统开发过程中设计的关键技术是系统的核心&#xff0c;而开发工具则会影响的项目开发的进程和效率。第二部分便描述了系统的设计与实现等相关开发工具。 2.1 Python简介 Python 属于一个高层次的脚本语言&#xff0c;以解释性&#xff0c;编译性&am…...

Unity-OpenCV-Imgproc函数概览

OpenCV-Imgproc函数概览 函数名功能描述createLineSegmentDetector创建一个智能指针到 LineSegmentDetector 对象并初始化它。此算法用于检测图像中的线段。getGaussianKernel返回高斯滤波器的系数。这些系数用于平滑图像或进行高斯模糊。getDerivKernels返回计算图像空间导数的…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...