SVD降维
文章目录
- 一、SVD降维的基本原理
- 二、SVD降维的步骤
- 三、SVD降维的优点
- 四、SVD降维的应用
- 五、代码应用
- 六、SVD降维的局限性
一、SVD降维的基本原理
SVD是线性代数中的一种技术,它将一个矩阵A分解为三个矩阵的乘积:A = UΣV^T。其中,U和V是正交矩阵,Σ是对角矩阵,对角线上的元素称为奇异值。这些奇异值表示了矩阵A在各个方向上的“重要性”或“能量”。
在降维过程中,SVD通过保留矩阵A中最大的几个奇异值,并忽略其他较小的奇异值,来近似地重构原始矩阵。这样做可以在保留数据主要信息的同时,减少数据的维度。
二、SVD降维的步骤
计算SVD:首先,对原始数据矩阵A进行SVD分解,得到矩阵U、Σ和V^T。
选择奇异值:根据需要保留的信息量或数据特征,选择Σ中前k个最大的奇异值。这一步是关键,因为它决定了降维后的数据维度和保留的信息量。
重构矩阵:使用选定的奇异值和对应的U、V^T的子矩阵,重构出一个近似于原始矩阵A但维度更低的矩阵A’。
三、SVD降维的优点
简化数据:通过去除不重要的特征,简化了数据表示,便于后续处理和分析。
去除噪声:较小的奇异值通常与噪声相关,因此通过忽略这些奇异值,可以在一定程度上去除数据中的噪声。
提高算法性能:降维后的数据具有更低的维度,可以减少计算量和存储需求,从而提高算法的性能。
四、SVD降维的应用
SVD降维在多个领域都有广泛的应用,包括但不限于:
推荐系统:在推荐系统中,SVD可以用于构建用户或物品的隐式特征向量,从而计算用户或物品之间的相似度。
图像处理:SVD可以用于图像压缩和去噪。通过保留图像中的主要特征(即较大的奇异值),可以在保持图像质量的同时减少数据量。
文本挖掘:SVD可以用于提取文本数据中的主题或潜在语义结构,帮助理解和分析大量文本数据。
五、代码应用
import numpy as np
from PIL import Image
import matplotlib.pyplot as pltdef pic_compress(k, pic_array):global u, sigma, vt, sig, new_picu, sigma, vt = np.linalg.svd(pic_array) # 进行奇异分解sig = np.eye(k) * sigma[:k] # np.eye用于生成一个单位矩阵new_pic = np.dot(np.dot(u[:, :k], sig), vt[:k, :]) # np.dot用于矩阵的乘法运算size = u.shape[0] * k + sig.shape[1] + k * vt.shape[1]return new_pic, sizeimg = Image.open("lf.jpg")
ori_img = np.array(img)
new_img, size = pic_compress(100, ori_img) # 压缩的维度
print("original size:" + str(ori_img.shape[0] * ori_img.shape[1]))
print("compress size:" + str(size))
fig, ax = plt.subplots(1, 2)
ax[0].imshow(ori_img, cmap='gray')
ax[0].set_title("before compress")
ax[1].imshow(new_img, cmap='gray')
ax[1].set_title("after compress")
plt.show()
- 函数定义:pic_compress 函数接受两个参数:k(要保留的奇异值的数量)和pic_array(图像的NumPy数组表示)。它使用SVD来分解图像矩阵,并尝试通过保留最大的k个奇异值来重构图像。
- SVD分解:使用 np.linalg.svd 对图像矩阵进行奇异值分解,得到矩阵 U、sigma(奇异值向量)和V的转置。这里需要注意的是,sigma 实际上是一个向量,而不是矩阵。
- 重构图像:通过创建一个对角矩阵 sig(其前k个对角元素是sigma的前k个元素,其余为0)来重构图像。通过np.dot对矩阵进行运算。
- 图像处理:读取图像,并进行维度压缩,然后打印原属数据的大小与压缩后数据的大小。
- 图像显示:使用 matplotlib 来显示原始图像和压缩后的图像。使用了 cmap=‘gray’,这会将图像转换为灰度进行显示。

六、SVD降维的局限性
尽管SVD降维具有许多优点,但它也存在一些局限性:
- 计算复杂度:对于大规模数据集,SVD的计算复杂度较高,可能需要较长的计算时间。
- 难以解释:SVD降维后的数据维度通常不再具有原始数据的直观意义,因此可能需要额外的解释工作来理解降维后的数据。
- 无法处理非线性关系:SVD是一种线性降维方法,无法有效处理数据中的非线性关系。
综上所述,SVD降维是一种有效的数据预处理技术,它可以通过提取数据的主要特征来降低数据的维度,并保留大部分重要信息。然而,在使用SVD降维时,也需要注意其局限性,并结合具体应用场景来选择合适的降维方法。
相关文章:
SVD降维
文章目录 一、SVD降维的基本原理二、SVD降维的步骤三、SVD降维的优点四、SVD降维的应用五、代码应用六、SVD降维的局限性 一、SVD降维的基本原理 SVD是线性代数中的一种技术,它将一个矩阵A分解为三个矩阵的乘积:A UΣV^T。其中,U和V是正交矩…...
剖析Cookie的工作原理及其安全风险
Cookie的工作原理主要涉及到HTTP协议中的状态管理。HTTP协议本身是无状态的,这意味着每次请求都是独立的,服务器不会保留之前的请求信息。为了在无状态的HTTP协议上实现有状态的会话,引入了Cookie机制。 1. Cookie定义 Cookie,也…...
规控面试复盘
目录 前言 一、京东方 1、CPP和C的区别是什么? 2、讲一下的ROS的话题通信 二、Momenta(泊车部门实习面试) 1、MPC的预测时间步是多少? 2、MPC的代价函数考虑的是什么? 三、九识 1、智能指针有哪些优缺点? 优点: 缺点: 2、Protobuf的数据传输效率为什么更高…...
Elastic Stack--ES集群加密及Kibana的RBAC实战
前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 学习B站博主教程笔记: 最新版适合自学的ElasticStack全套视频(Elk零基础入门到精通教程)Linux运维必备—Elastic…...
【开源免费】基于SpringBoot+Vue.JS图书个性化推荐系统(JAVA毕业设计)
本文项目编号 T 015 ,文末自助获取源码 \color{red}{T015,文末自助获取源码} T015,文末自助获取源码 目录 一、系统介绍1.1 业务分析1.2 用例设计1.3 时序设计 二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究…...
STM32(F103ZET6)第十九课:FreeRtos的移植和使用
目录 需求一、FreeRtos简介二、移植FreeRtos1.复制代码2.内存空间分配和内核相关接口3.FreeRtosConfig4.添加到工程中三、任务块操作1.任务四种状态2.创建任务过程 需求 1.将FreeRtos(嵌入式实时操作系统)移植到STM32中。 2.在该系统中实现任务的创建、…...
索尼的Web3蓝图:从技术创新到现实应用的全方位布局
近年来,随着区块链技术和加密资产的迅猛发展,全球科技巨头纷纷投入其中,力图在Web3浪潮中占据一席之地。作为传统科技行业的巨头,索尼(Sony)也不甘落后,积极推动其Web3战略布局,展现出其在新兴领域的强烈野…...
探索Java中的分布式消息队列与事件总线:架构、实现与最佳实践
引言 在现代分布式系统中,消息队列和事件总线已经成为实现松耦合、高扩展性和高可用性架构的关键组件。无论是微服务架构、事件驱动架构,还是实时数据处理,消息队列和事件总线都扮演着至关重要的角色。本文将深入探讨Java中的分布式消息队列…...
HTML零基础教程(超详细)
一、什么是HTML HTML,全称超文本标记语言(HyperText Markup Language),是一种用于创建网页的标准标记语言。它通过一系列标签来定义网页的结构、内容和格式。HTML文档是由HTML元素构成的文本文件,这些元素包括标题、段…...
011.Python爬虫系列_bs4解析
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数…...
django摄影竞赛小程序论文源码调试讲解
2系统关键技术及工具简介 系统开发过程中设计的关键技术是系统的核心,而开发工具则会影响的项目开发的进程和效率。第二部分便描述了系统的设计与实现等相关开发工具。 2.1 Python简介 Python 属于一个高层次的脚本语言,以解释性,编译性&am…...
Unity-OpenCV-Imgproc函数概览
OpenCV-Imgproc函数概览 函数名功能描述createLineSegmentDetector创建一个智能指针到 LineSegmentDetector 对象并初始化它。此算法用于检测图像中的线段。getGaussianKernel返回高斯滤波器的系数。这些系数用于平滑图像或进行高斯模糊。getDerivKernels返回计算图像空间导数的…...
水晶连连看 - 无限版软件操作说明书
水晶连连看 – 无限版游戏软件使用说明书 文章目录 水晶连连看 – 无限版游戏软件使用说明书1 引言1.1 编写目的1.2 项目名称1.3 项目背景1.4 项目开发环境 2 概述2.1 目标2.2 功能2.3 性能 3 运行环境3.1 硬件3.2 软件 4 使用说明4.1 游戏开始界面4.2 游戏设定4.2.1 游戏帮助4…...
目标检测-YOLOv3
YOLOv3介绍 YOLOv3 (You Only Look Once, Version 3) 是 YOLO 系列目标检测模型的第三个版本,相较于 YOLOv2 有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3 的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对 YOLOv3 …...
vscode好用的快捷键整理~
vscode好用的快捷键 将当前行复制并插入到上一行 shift alt ↑将当前行复制并插入到上一行 shift alt ↓将光标复制到上一行 ctrl alt ↑将光标复制到下一行 ctrl alt ↓删除当前行 ctrl x 本身是剪切当前行,也可以作为删除当前行来用选中下一个相同的片段…...
Docker in Docker 实践 on mac
在尝试tekton构建ci pipeline是,需要在k8 pod里build image,于是研究了如何docker in docker。 1. 编写自己的dind docker image FROM docker:20.10.16-dind ENV DOCKER_HOST unix:///var/run/docker.sock 2. docker build 自己的dind docker image并…...
Flask-Session扩展,使用Redis存储会话数据
深入理解Flask-session扩展Redis Flask 应用中使用 flask-session 扩展将 session 数据存储在 Redis 中是一种高效且可扩展的方法,特别是在需要处理大量用户或需要分布式部署的应用中。以下是如何在 Flask 应用中配置 flask-session 以使用 Redis 存储 session 的步…...
urdf ( xacro ) 的 collision碰撞参数设置
目录 写在前面的话整体流程1 URDF 文件结构2 查看原始碰撞形状描述3 加入简单碰撞形状描述方法一 Meshlab 自动测量方法二 人为测量 4 加入XACRO函数简化描述 最终结果展示侧视图正视图碰撞几何体中心点设置不对出现的结果 写在前面的话 本文使用的 URDF 文件是由 solidworks …...
iOS——方法交换Method Swizzing
什么是方法交换 Method Swizzing是发生在运行时的,主要用于在运行时将两个Method进行交换,我们可以将Method Swizzling代码写到任何地方,但是只有在这段Method Swilzzling代码执行完毕之后互换才起作用。 利用Objective-C Runtimee的动态绑定…...
【有啥问啥】大模型应用中的哈希链推理任务
大模型应用中的哈希链推理任务 随着人工智能技术的快速发展,尤其是大模型(如GPT、BERT、Vision Transformer等)的广泛应用,确保数据处理和模型推理的透明性与安全性变得愈发重要。哈希链推理任务作为一种技术手段,能够…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...
