【开源免费】基于SpringBoot+Vue.JS图书个性化推荐系统(JAVA毕业设计)
本文项目编号 T 015 ,文末自助获取源码 \color{red}{T015,文末自助获取源码} T015,文末自助获取源码
目录
- 一、系统介绍
- 1.1 业务分析
- 1.2 用例设计
- 1.3 时序设计
- 二、演示录屏
- 三、启动教程
- 四、功能截图
- 五、文案资料
- 5.1 选题背景
- 5.2 国内外研究现状
- 5.3 可行性分析
- 六、核心代码
- 6.1 查询图书
- 6.2 新增图书预约
- 6.3 查询图书资讯
一、系统介绍

1.1 业务分析

基于Vue.js和SpringBoot的图书个性化推荐系统,分为用户网页和管理后台,可以给管理员、学生使用,包括图书分类模块、图书信息模块、图书预约模块、图书退换模块、留言板模块和系统基础模块,项目编号T015。

1.2 用例设计
本图书个性化推荐系统主要包括二大功能模块,即学生功能模块和管理员功能模块。
管理员模块:系统中的核心用户是管理员,管理员登录后,通过管理员功能来管理后台系统。主要功能有:首页、个人中心、学生管理、图书分类管理、图书信息管理、图书预约管理、退换图书管理、管理员管理、留言板管理、系统管理等功能。

学生:首页、个人中心、图书预约管理、退换图书管理、我的收藏管理等功能。

1.3 时序设计
登录模块主要满足了管理员以及学生的权限登录,登录模块顺序图如下。

管理员以及学生登录后均可进行添加信息操作,添加信息模块顺序图如下。

二、演示录屏
三、启动教程
四、功能截图







五、文案资料
5.1 选题背景
随着信息技术的快速发展,人们获取信息的途径越来越多样化,图书资源也日益丰富。然而,面对海量的图书资源,用户往往难以找到自己感兴趣的书籍。为了解决这一问题,图书个性化推荐系统应运而生。个性化推荐系统是一种基于用户兴趣和行为的智能推荐技术,能够根据用户的历史行为、偏好和社交关系等信息,为用户推荐符合其兴趣的书籍。
5.2 国内外研究现状
国外图书个性化推荐系统的研究现状已经取得了显著的进展,特别是在机器学习和数据挖掘技术的应用方面。近年来,研究者们致力于开发更加智能、高效的推荐算法,以满足用户日益增长的个性化需求。这些算法包括基于内容的推荐、协同过滤推荐、混合推荐等,它们通过分析用户的历史行为、偏好和社交网络信息,为用户提供定制化的图书推荐。此外,深度学习技术在图书推荐领域的应用也逐渐增多,如使用卷积神经网络和循环神经网络对文本数据进行建模,以提高推荐系统的准确性和鲁棒性。同时,为了解决数据稀疏性和冷启动问题,一些研究者开始尝试利用元数据、用户反馈和跨领域知识来增强推荐效果。尽管如此,图书个性化推荐系统仍面临一些挑战,如用户隐私保护、推荐系统公平性和多样性等。未来的研究需要在这些方面进行更深入的探讨,以实现更加全面、可靠的个性化推荐服务。
国内图书个性化推荐系统的研究现状已经取得了显著的进展,随着大数据和人工智能技术的不断发展,越来越多的研究者开始关注这一领域。目前,国内图书个性化推荐系统主要采用基于内容的推荐、协同过滤推荐、混合推荐等方法,通过分析用户的历史行为、偏好和兴趣,为用户推荐符合其个性化需求的图书。同时,许多研究者也在探索利用深度学习、自然语言处理等先进技术,提高推荐系统的准确性和智能化水平。此外,为了满足用户多样化的阅读需求,一些推荐系统还尝试结合用户的社会网络信息、情境信息等多维度数据,实现更加精准的个性化推荐。然而,尽管取得了一定的成果,国内图书个性化推荐系统仍面临着数据稀疏、冷启动问题、用户隐私保护等挑战,需要进一步的研究和探索。
5.3 可行性分析
图书个性化推荐系统在当前数字化时代具有显著的经济可行性,因为它能够为书店、在线平台和图书馆等提供一种高效、低成本的方式来满足用户对个性化阅读体验的需求。通过利用大数据和机器学习技术,系统能够分析用户的历史行为、偏好和兴趣,从而推荐最符合其口味的书籍,这不仅提高了用户满意度,还能增加销售额和客户忠诚度。此外,个性化推荐系统还能降低库存成本,减少过剩库存的风险,同时提高图书的周转率。随着技术的进步和用户需求的不断变化,投资于图书个性化推荐系统将为相关企业带来长期的竞争优势和商业价值。
图书个性化推荐系统在当今社会具有极高的可行性,因为它能够满足人们日益增长的个性化需求。随着互联网的普及和大数据技术的发展,我们可以更准确地分析用户的兴趣和阅读习惯,从而为他们推荐更符合个人喜好的书籍。这种系统不仅能够提高用户的阅读体验,还能帮助出版社和书店更有效地推广图书,实现资源的优化配置。此外,个性化推荐系统还可以激发读者的阅读兴趣,拓宽他们的知识视野,促进知识的传播和交流。因此,图书个性化推荐系统在当今社会具有广泛的应用前景和深远的社会影响。
六、核心代码
6.1 查询图书
@RequestMapping("/page")
public R page(@RequestParam Map<String, Object> params, TushuxinxiEntity tushuxinxi, HttpServletRequest request){EntityWrapper<TushuxinxiEntity> ew = new EntityWrapper<TushuxinxiEntity>();PageUtils page = tushuxinxiService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.likeOrEq(ew, tushuxinxi), params), params));return R.ok().put("data", page);
}
6.2 新增图书预约
@RequestMapping("/save")
public R save(@RequestBody TushuyuyueEntity tushuyuyue, HttpServletRequest request){tushuyuyue.setId(new Date().getTime()+new Double(Math.floor(Math.random()*1000)).longValue());ValidatorUtils.validateEntity(tushuyuyue);tushuyuyueService.insert(tushuyuyue);return R.ok();
}
6.3 查询图书资讯
@RequestMapping("/page")
public R page(@RequestParam Map<String, Object> params, NewsEntity news, HttpServletRequest request){EntityWrapper<NewsEntity> ew = new EntityWrapper<NewsEntity>();PageUtils page = newsService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.likeOrEq(ew, news), params), params));return R.ok().put("data", page);
}
本文项目编号 T015,希望给大家带来帮助!
相关文章:
【开源免费】基于SpringBoot+Vue.JS图书个性化推荐系统(JAVA毕业设计)
本文项目编号 T 015 ,文末自助获取源码 \color{red}{T015,文末自助获取源码} T015,文末自助获取源码 目录 一、系统介绍1.1 业务分析1.2 用例设计1.3 时序设计 二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究…...
STM32(F103ZET6)第十九课:FreeRtos的移植和使用
目录 需求一、FreeRtos简介二、移植FreeRtos1.复制代码2.内存空间分配和内核相关接口3.FreeRtosConfig4.添加到工程中三、任务块操作1.任务四种状态2.创建任务过程 需求 1.将FreeRtos(嵌入式实时操作系统)移植到STM32中。 2.在该系统中实现任务的创建、…...
索尼的Web3蓝图:从技术创新到现实应用的全方位布局
近年来,随着区块链技术和加密资产的迅猛发展,全球科技巨头纷纷投入其中,力图在Web3浪潮中占据一席之地。作为传统科技行业的巨头,索尼(Sony)也不甘落后,积极推动其Web3战略布局,展现出其在新兴领域的强烈野…...
探索Java中的分布式消息队列与事件总线:架构、实现与最佳实践
引言 在现代分布式系统中,消息队列和事件总线已经成为实现松耦合、高扩展性和高可用性架构的关键组件。无论是微服务架构、事件驱动架构,还是实时数据处理,消息队列和事件总线都扮演着至关重要的角色。本文将深入探讨Java中的分布式消息队列…...
HTML零基础教程(超详细)
一、什么是HTML HTML,全称超文本标记语言(HyperText Markup Language),是一种用于创建网页的标准标记语言。它通过一系列标签来定义网页的结构、内容和格式。HTML文档是由HTML元素构成的文本文件,这些元素包括标题、段…...
011.Python爬虫系列_bs4解析
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数…...
django摄影竞赛小程序论文源码调试讲解
2系统关键技术及工具简介 系统开发过程中设计的关键技术是系统的核心,而开发工具则会影响的项目开发的进程和效率。第二部分便描述了系统的设计与实现等相关开发工具。 2.1 Python简介 Python 属于一个高层次的脚本语言,以解释性,编译性&am…...
Unity-OpenCV-Imgproc函数概览
OpenCV-Imgproc函数概览 函数名功能描述createLineSegmentDetector创建一个智能指针到 LineSegmentDetector 对象并初始化它。此算法用于检测图像中的线段。getGaussianKernel返回高斯滤波器的系数。这些系数用于平滑图像或进行高斯模糊。getDerivKernels返回计算图像空间导数的…...
水晶连连看 - 无限版软件操作说明书
水晶连连看 – 无限版游戏软件使用说明书 文章目录 水晶连连看 – 无限版游戏软件使用说明书1 引言1.1 编写目的1.2 项目名称1.3 项目背景1.4 项目开发环境 2 概述2.1 目标2.2 功能2.3 性能 3 运行环境3.1 硬件3.2 软件 4 使用说明4.1 游戏开始界面4.2 游戏设定4.2.1 游戏帮助4…...
目标检测-YOLOv3
YOLOv3介绍 YOLOv3 (You Only Look Once, Version 3) 是 YOLO 系列目标检测模型的第三个版本,相较于 YOLOv2 有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3 的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对 YOLOv3 …...
vscode好用的快捷键整理~
vscode好用的快捷键 将当前行复制并插入到上一行 shift alt ↑将当前行复制并插入到上一行 shift alt ↓将光标复制到上一行 ctrl alt ↑将光标复制到下一行 ctrl alt ↓删除当前行 ctrl x 本身是剪切当前行,也可以作为删除当前行来用选中下一个相同的片段…...
Docker in Docker 实践 on mac
在尝试tekton构建ci pipeline是,需要在k8 pod里build image,于是研究了如何docker in docker。 1. 编写自己的dind docker image FROM docker:20.10.16-dind ENV DOCKER_HOST unix:///var/run/docker.sock 2. docker build 自己的dind docker image并…...
Flask-Session扩展,使用Redis存储会话数据
深入理解Flask-session扩展Redis Flask 应用中使用 flask-session 扩展将 session 数据存储在 Redis 中是一种高效且可扩展的方法,特别是在需要处理大量用户或需要分布式部署的应用中。以下是如何在 Flask 应用中配置 flask-session 以使用 Redis 存储 session 的步…...
urdf ( xacro ) 的 collision碰撞参数设置
目录 写在前面的话整体流程1 URDF 文件结构2 查看原始碰撞形状描述3 加入简单碰撞形状描述方法一 Meshlab 自动测量方法二 人为测量 4 加入XACRO函数简化描述 最终结果展示侧视图正视图碰撞几何体中心点设置不对出现的结果 写在前面的话 本文使用的 URDF 文件是由 solidworks …...
iOS——方法交换Method Swizzing
什么是方法交换 Method Swizzing是发生在运行时的,主要用于在运行时将两个Method进行交换,我们可以将Method Swizzling代码写到任何地方,但是只有在这段Method Swilzzling代码执行完毕之后互换才起作用。 利用Objective-C Runtimee的动态绑定…...
【有啥问啥】大模型应用中的哈希链推理任务
大模型应用中的哈希链推理任务 随着人工智能技术的快速发展,尤其是大模型(如GPT、BERT、Vision Transformer等)的广泛应用,确保数据处理和模型推理的透明性与安全性变得愈发重要。哈希链推理任务作为一种技术手段,能够…...
DevExpress WinForms v24.1新版亮点:功能区、数据编辑器全新升级
DevExpress WinForms拥有180组件和UI库,能为Windows Forms平台创建具有影响力的业务解决方案。DevExpress WinForms能完美构建流畅、美观且易于使用的应用程序,无论是Office风格的界面,还是分析处理大批量的业务数据,它都能轻松胜…...
FreeRTOS内部机制学习01(任务创建的细节以及任务调度的内部机制)
文章目录 前言:首先要谢谢韦东山老师的无私奉献,让我学到了很多东西,我做这个笔记是害怕我会忘记,所以就记录了下来,希望对大家有帮助!关于寄存器CPU内部的寄存器这些寄存器到底要保存一些什么?…...
CANoe突然出现Trace窗口筛选项无法显示的问题
原因:和最近window的推送的补丁包有关 同事通过网上的操作,一顿操作猛如虎,卸载掉了这个插件,结果电脑文件夹无法打开和闪退。 IT的同事通过cmd命令也无法恢复。 dism /online /cleanup-image /scanhealth dism /online /cleanu…...
Linux日志-sar日志
作者介绍:简历上没有一个精通的运维工程师。希望大家多多关注作者,下面的思维导图也是预计更新的内容和当前进度(不定时更新)。 Linux 系统中的日志是记录系统活动和事件的重要工具,它们可以帮助管理员监视系统状态、调查问题以及了解系统运行…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
高抗扰度汽车光耦合器的特性
晶台光电推出的125℃光耦合器系列产品(包括KL357NU、KL3H7U和KL817U),专为高温环境下的汽车应用设计,具备以下核心优势和技术特点: 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计,确保在…...
【阅读笔记】MemOS: 大语言模型内存增强生成操作系统
核心速览 研究背景 研究问题:这篇文章要解决的问题是当前大型语言模型(LLMs)在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色,但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成(RA…...
