iOS——GCD再学习
GCD
使用GCD好处,具体如下:
- GCD 可用于多核的并行运算;
- GCD 会自动利用更多的 CPU 内核(比如双核、四核);
- GCD 会自动管理线程的生命周期(创建线程、调度任务、销毁线程);
- 程序员只需要告诉 GCD 想要执行什么任务,不需要编写任何线程管理代码。
任务与队列
概念
**任务:就是执行操作的意思,换句话说就是你在线程中执行的那段代码。**在 GCD 中是放在 block 中的。执行任务有两种方式:同步执行 和 异步执行。
两者的主要区别是:是否等待队列的任务执行结束,以及是否具备开启新线程的能力。
-
同步执行(sync):
同步添加任务到指定的队列中,在添加的任务执行结束之前,会一直等待,直到队列里面的任务完成之后再继续执行。
只能在当前线程中执行任务,不具备开启新线程的能力。 -
异步执行(async):
异步添加任务到指定的队列中,它不会做任何等待,可以继续执行任务。
可以在新的线程中执行任务,具备开启新线程的能力。
注意:异步执行(async)虽然具有开启新线程的能力,但是并不一定开启新线程。这跟任务所指定的队列类型有关。
队列(Dispatch Queue):这里的队列指执行任务的等待队列,即用来存放任务的队列。
队列是一种特殊的线性表,采用 FIFO(先进先出)的原则,即新任务总是被插入到队列的末尾,而读取任务的时候总是从队列的头部开始读取。
GCD 提供了同步执行任务的创建方法dispatch_sync
和异步执行任务创建方法dispatch_async
串行队列和并发队列
在 GCD 中有两种队列:串行队列 和 并发队列。
两者都符合 FIFO(先进先出)的原则。
两者的主要区别是:执行顺序不同,以及开启线程数不同。
-
串行队列(Serial Dispatch Queue):
每次只有一个任务被执行。让任务一个接着一个地执行。(只开启一个线程,一个任务执行完毕后,再执行下一个任务) -
并发队列(Concurrent Dispatch Queue):
可以让多个任务并发(同时)执行。(可以开启多个线程,并且同时执行任务)
DISPATCH_QUEUE_SERIAL
表示串行队列。
DISPATCH_QUEUE_CONCURRENT
表示并发队列。
并发队列 的并发功能只有在异步(dispatch_async)方法下才有效。
主队列
主队列是一种特殊的 串行队列,在libdispatch_init
初始化时就创建了主队列,并且完成了与主线程的绑定。这些都是在程序main()函数之前就已完成的。
也就是说程序完成启动之时就已经有了主队列,并且所有放在主队列中的任务都是在主线程中执行的。==不管是同步还是异步都不会开辟新线程,任务只会在主线程执行。==这也是通常在主线程刷新UI时会将任务放到主队列的原因。
可通过dispatch_get_main_queue()
获取主队列。
全局并发队列
全局并发队列 本质上是一个并发队列,由系统提供,方便编程,不用创建就可使用。
可通过dispatch_get_global_queue(long indentifier.unsigned long flags)
获取全局并发队列。
该函数提供了两个参数,第一个参数表示队列优先级,通常写0,也就是默认优先级。可以通过服务质量类值来获取不同优先级的全局并发队列。
六种组合方式

同步执行+并发队列
有如下代码:
- (void)syncConcurrent {//打印syncConcurrent最开始执行的线程NSLog(@"%@", [NSThread currentThread]);//使用CONCURRENT并发队列dispatch_queue_t queue = dispatch_queue_create("elevenTest.queue", DISPATCH_QUEUE_CONCURRENT);dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1--%@", [NSThread currentThread]);});dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"2--%@", [NSThread currentThread]);});dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3--%@", [NSThread currentThread]);});
}
执行结果:
所有任务都是在当前线程(主线程)中执行的,没有开启新的线程(同步执行不具备开启新线程的能力)。
按顺序执行的原因:虽然 并发队列 可以开启多个线程,并且同时执行多个任务。
但是因为本身不能创建新线程,只有当前线程这一个线程(同步任务 不具备开启新线程的能力),所以也就不存在并发。而且当前线程只有等待当前队列中正在执行的任务执行完毕之后,才能继续接着执行下面的操作(同步任务 需要等待队列的任务执行结束)。
所以任务只能一个接一个按顺序执行,不能同时被执行。
同步执行+串行队列
- (void)syncConcurrent {//打印syncConcurrent最开始执行的线程NSLog(@"%@", [NSThread currentThread]);//使用SERIAL串行队列dispatch_queue_t queue = dispatch_queue_create("elevenTest.queue", DISPATCH_QUEUE_SERIAL);dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1--%@", [NSThread currentThread]);});dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"2--%@", [NSThread currentThread]);});dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3--%@", [NSThread currentThread]);});
}
运行结果:
所有任务都是在当前线程(主线程)中执行的,并没有开启新的线程(同步执行 不具备开启新线程的能力)。
任务是按顺序执行的(串行队列 每次只有一个任务被执行,任务一个接一个按顺序执行)。
异步执行+串行队列
- (void)syncConcurrent {//打印syncConcurrent最开始执行的线程NSLog(@"%@", [NSThread currentThread]);NSLog(@"start");dispatch_queue_t queue = dispatch_queue_create("elevenTest.queue1", DISPATCH_QUEUE_SERIAL);dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1--%@", [NSThread currentThread]);});dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"2--%@", [NSThread currentThread]);});dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3--%@", [NSThread currentThread]);});NSLog(@"end");
}
执行结果:

开启了一条新线程(异步执行 具备开启新线程的能力,串行队列 只开启一个线程)。
任务是按顺序执行的(串行队列 每次只有一个任务被执行,任务一个接一个按顺序执行)。
异步执行+并发队列
- (void)syncConcurrent {//打印syncConcurrent最开始执行的线程NSLog(@"%@", [NSThread currentThread]);NSLog(@"start");dispatch_queue_t queue = dispatch_queue_create("elevenTest.queue1", DISPATCH_QUEUE_CONCURRENT);dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1--%@", [NSThread currentThread]);});dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"2--%@", [NSThread currentThread]);});dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3--%@", [NSThread currentThread]);});NSLog(@"end");
}
执行结果:
除了当前线程(主线程),系统又开启了 3 个线程,并且任务是交替/同时执行的。(异步执行 具备开启新线程的能力。且 并发队列 可开启多个线程,同时执行多个任务)。
说明当前线程没有等待,而是直接开启了新线程,在新线程中执行任务(异步执行 不做等待,可以继续执行任务)。
同步执行+主队列
- (void)syncConcurrent {//打印syncConcurrent最开始执行的线程NSLog(@"%@", [NSThread currentThread]);NSLog(@"start");dispatch_queue_t queue = dispatch_get_main_queue();dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1--%@", [NSThread currentThread]);});dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"2--%@", [NSThread currentThread]);});dispatch_sync(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3--%@", [NSThread currentThread]);});NSLog(@"end");
}
执行结果:

同步执行 + 主队列
在主线程中调用会发生死锁问题,而在其他线程中调用则不会。
这是因为我们在主线程中执行 syncConcurrent 方法,相当于把 syncConcurrent 任务放到了主线程的队列中。而 同步执行 会等待当前队列中的任务执行完毕,才会接着执行。那么当我们把 任务 1 追加到主队列中,任务 1 就在等待主线程处理完 syncConcurrent 任务。而syncConcurrent 任务需要等待 任务 1 执行完毕,才能接着执行。
那么,现在的情况就是 syncConcurrent 任务和 任务 1 都在等对方执行完毕。这样大家互相等待,所以就卡住了,所以我们的任务执行不了,而且 send 也没有打印。
为什么放到其他线程中就不会卡住了呢?
因为当任务放到了其他线程里,而 任务 1、任务 2、任务3 都在追加到主队列中,这三个任务都会在主线程中执行。
syncConcurrent任务在其他线程中执行到追加 任务 1 到主队列中,因为主队列现在没有正在执行的任务,所以,会直接执行主队列的 任务1,等 任务1 执行完毕,再接着执行 任务 2、任务 3。所以这里不会卡住线程,也就不会造成死锁问题。
异步执行+主队列
/*** 异步执行 + 主队列* 特点:只在主线程中执行任务,执行完一个任务,再执行下一个任务*/
- (void)asyncMain {NSLog(@"currentThread---%@",[NSThread currentThread]); NSLog(@"asyncMain---begin");dispatch_queue_t queue = dispatch_get_main_queue();dispatch_async(queue, ^{// 追加任务 1[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1---%@",[NSThread currentThread]); // 打印当前线程});dispatch_async(queue, ^{// 追加任务 2[NSThread sleepForTimeInterval:2];// 模拟耗时操作NSLog(@"2---%@",[NSThread currentThread]);// 打印当前线程});dispatch_async(queue, ^{// 追加任务 3[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3---%@",[NSThread currentThread]);// 打印当前线程});NSLog(@"asyncMain---end");
}打印:
[17521:4243690] currentThread—-{number = 1, name = main}
[17521:4243690] asyncMain—-begin
[17521:4243690] asyncMain—-end
[17521:4243690] 1—-{number = 1, name = main}
[17521:4243690] 2—-{number = 1, name = main}
[17521:4243690] 3—-{number = 1, name = main}
所有任务都是在当前线程(主线程)中执行的,并没有开启新的线程(虽然 异步执行 具备开启线程的能力,但因为是主队列,所以所有任务都在主线程中)。
任务是按顺序执行的(因为主队列是 串行队列,每次只有一个任务被执行,任务一个接一个按顺序执行)。
为什么一定要在主线程更新UI呢?
首先,UIKit不是线程安全的,当多个线程同时操作UI时,抢夺资源,有可能导致崩溃,UI异常等问题。假如在两个线程中设置了同一张背景图片,很有可能就会由于背景图片被释放两次,使得程序崩溃。或者某一个线程中遍历找寻某个subView,然而在另一个线程中删除了该subView,那么就会造成错乱。
子线程到底能不能更新UI呢?
有时也可以,但是会有问题。在子线程能更新的UI是一个假象,其实是子线程代码执行完毕了,又自动进入到了主线程,执行了子线程中的UI更新的函数栈,这中间的时间非常的短,就让大家误以为分线程可以更新UI。如果子线程一直在运行,则子线程中的UI更新的函数栈,主线程就无法获知,那就无法更新直到子线程结束。
GCD的一些函数
栅栏函数:dispatch_barrier_async/sync
dispatch_barrier_async
方法:
- 在调用
dispatch_barrier_async
之前,所有被添加到并发队列中的任务都会并发执行。 - 当
dispatch_barrier_async
添加的任务开始执行时,会等待之前所有添加到队列中的任务执行完毕。 dispatch_barrier_async
中添加的任务独占地执行,确保在执行任务时,没有其他任务在执行。- 栅栏中的任务执行完毕后,队列恢复正常的并发行为,后续添加的任务可以并发执行。
有如下代码:
- (void)syncConcurrent {//打印syncConcurrent最开始执行的线程NSLog(@"%@", [NSThread currentThread]);NSLog(@"start");dispatch_queue_t queue = dispatch_queue_create("eleven", DISPATCH_QUEUE_CONCURRENT);dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1--%@", [NSThread currentThread]);});dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"2--%@", [NSThread currentThread]);});dispatch_barrier_async(queue, ^{[NSThread sleepForTimeInterval:2];NSLog(@"barrier--%@", [NSThread currentThread]);NSLog(@"barrier start");sleep(5);NSLog(@"barrier end");});dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3--%@", [NSThread currentThread]);});dispatch_async(queue, ^{[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"4--%@", [NSThread currentThread]);});NSLog(@"end");
}
执行结果:
dispatch_barrier_async
:不会阻塞调用它的线程,屏障任务在并发队列中独占执行,但调用它的线程可以继续执行其他任务。对于自定义的并发队列,会按照上面的顺序执行,但是如果是系统的全局并发队列dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
,就不是这个顺序了,他们四个任务的顺序是不确定的;
dispatch_barrier_sync
:会阻塞调用它的线程,直到屏障任务完成,调用线程才会继续执行。
GCD 延时执行方法:dispatch_after
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{// 2.0 秒后异步追加任务代码到主队列,并开始执行NSLog(@"after---%@",[NSThread currentThread]); });
GCD 一次性代码(只执行一次):dispatch_once
我们在创建单例、或者有整个程序运行过程中只执行一次的代码时,我们就用到了 GCD 的 dispatch_once 方法。
使用 dispatch_once 方法能保证某段代码在程序运行过程中只被执行 1 次,并且即使在多线程的环境下,dispatch_once 也可以保证线程安全。
- (void)once {static dispatch_once_t onceToken;dispatch_once(&onceToken, ^{// 只执行 1 次的代码(这里面默认是线程安全的)});
}
GCD 快速迭代方法:dispatch_apply
通常我们会用 for 循环遍历,但是 GCD 给我们提供了快速迭代的方法 dispatch_apply
。
dispatch_apply
按照指定的次数将指定的任务追加到指定的队列中,并等待全部队列执行结束。
如果是在串行队列中使用 dispatch_apply
,那么就和 for 循环一样,按顺序同步执行。但是这样就体现不出快速迭代的意义了。
我们可以利用并发队列进行异步执行。比如说遍历 0~5 这 6 个数字,for 循环的做法是每次取出一个元素,逐个遍历。dispatch_apply
可以 在多个线程中同时(异步)遍历多个数字。
还有一点,无论是在串行队列,还是并发队列中,dispatch_apply
都会等待全部任务执行完毕,这点就像是同步操作,也像是队列组中的 dispatch_group_wait
方法。
- (void)syncConcurrent {dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);NSLog(@"apply---begin");dispatch_apply(6, queue, ^(size_t index) {NSLog(@"%zd---%@",index, [NSThread currentThread]);});NSLog(@"apply---end");}
执行结果:

GCD 队列组:dispatch_group
会有这样的需求:分别异步执行2个耗时任务,然后当2个耗时任务都执行完毕后再回到主线程执行任务。这时候我们可以用到 GCD 的队列组。
调用队列组的 dispatch_group_async
先把任务放到队列中,然后将队列放入队列组中。或者使用队列组的dispatch_group_enter
、dispatch_group_leave
组合来实现 dispatch_group_async
。
调用队列组的dispatch_group_notify
回到指定线程执行任务。或者使用dispatch_group_wait
回到当前线程继续向下执行(会阻塞当前线程)。
dispatch_group_notify
监听 group 中任务的完成状态,当所有的任务都执行完成后,追加任务到 group 中,并执行任务
- (void)viewDidLoad {[super viewDidLoad];//打印syncConcurrent最开始执行的线程NSLog(@"%@", [NSThread currentThread]);NSLog(@"start");dispatch_group_t group = dispatch_group_create();dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{[NSThread sleepForTimeInterval:2];NSLog(@"1--%@", [NSThread currentThread]);});dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{[NSThread sleepForTimeInterval:2];NSLog(@"2--%@", [NSThread currentThread]);});dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{[NSThread sleepForTimeInterval:2];NSLog(@"3--%@", [NSThread currentThread]);});dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{[NSThread sleepForTimeInterval:2];NSLog(@"4--%@", [NSThread currentThread]);});dispatch_group_notify(group, dispatch_get_main_queue(), ^{[NSThread sleepForTimeInterval:2];NSLog(@"5--%@", [NSThread currentThread]);});dispatch_group_wait(group, DISPATCH_TIME_FOREVER);NSLog(@"end");
}
执行结果:

dispatch_group_wait
暂停当前线程(阻塞当前线程),等待指定的 group 中的任务执行完成后,才会往下继续执行。
当所有任务执行完成之后,才执行 dispatch_group_wait
之后的操作。但是,使用dispatch_group_wait
会阻塞当前线程。
dispatch_group_enter、dispatch_group_leave
dispatch_group_enter
标志着一个任务追加到 group,执行一次,相当于 group 中未执行完毕任务数 +1
dispatch_group_leave
标志着一个任务离开了 group,执行一次,相当于 group 中未执行完毕任务数 -1。
当 group 中未执行完毕任务数为0的时候,才会使 dispatch_group_wait
解除阻塞,以及执行追加到 dispatch_group_notify
中的任务。
- (void)viewDidLoad {[super viewDidLoad];NSLog(@"currentThread---%@",[NSThread currentThread]);NSLog(@"group---begin");dispatch_group_t group = dispatch_group_create();dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);dispatch_group_enter(group);dispatch_async(queue, ^{// 追加任务 1[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1---%@",[NSThread currentThread]); // 打印当前线程dispatch_group_leave(group);});dispatch_group_enter(group);dispatch_async(queue, ^{// 追加任务 2[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"2---%@",[NSThread currentThread]);// 打印当前线程dispatch_group_leave(group);});dispatch_group_notify(group, dispatch_get_main_queue(), ^{// 等前面的异步操作都执行完毕后,回到主线程.[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"3---%@",[NSThread currentThread]);// 打印当前线程NSLog(@"group---end");});
}
这里的dispatch_group_enter
、dispatch_group_leave
组合,其实等同于dispatch_group_async
。
GCD 信号量:dispatch_semaphore
GCD 中的信号量是指 Dispatch Semaphore,是持有计数的信号。
在 Dispatch Semaphore 中,使用计数来完成这个功能,计数小于 0 时等待,不可通过。计数为 0 或大于 0 时,计数减 1 且不等待,可通过。
Dispatch Semaphore 提供了三个方法:
dispatch_semaphore_create
:创建一个 Semaphore 并初始化信号的总量
dispatch_semaphore_signa
l:发送一个信号,让信号总量加 1
dispatch_semaphore_wait
:可以使总信号量减 1,信号总量小于 0 时就会一直等待(阻塞所在线程),否则就可以正常执行。
注意:信号量的使用前提是:想清楚你需要处理哪个线程等待(阻塞),又要哪个线程继续执行,然后使用信号量。
- Dispatch Semaphore 在实际开发中主要用于:
- 保持线程同步,将异步执行任务转换为同步执行任务
- 保证线程安全,为线程加锁
但是使用信号量可能会造成线程优先级反转,且无法避免。
有如下代码:
- (void)viewDidLoad {[super viewDidLoad];NSLog(@"currentThread---%@",[NSThread currentThread]);NSLog(@"semaphore---begin");dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);__block int number = 0;dispatch_async(queue, ^{// 追加任务 1[NSThread sleepForTimeInterval:2]; // 模拟耗时操作NSLog(@"1---%@",[NSThread currentThread]);// 打印当前线程number = 100;dispatch_semaphore_signal(semaphore);});dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);NSLog(@"semaphore---end,number = %d",number);}
执行结果:

执行顺序如下:
- semaphore 初始创建时计数为 0。
- 异步执行 将 任务 1 追加到队列之后,不做等待,接着执行 dispatch_semaphore_wait 方法,semaphore 减 1,此时 semaphore == -1,当前线程进入等待状态。
- 然后,异步任务 1 开始执行。任务 1 执行到 dispatch_semaphore_signal 之后,总信号量加 1,此时 semaphore == 0,正在被阻塞的线程(主线程)恢复继续执行。
- 最后打印 semaphore—end,number = 100。
线程同步:可理解为线程 A 和 线程 B 一块配合,A 执行到一定程度时要依靠线程 B 的某个结果,于是停下来,示意 B 运行;B 依言执行,再将结果给 A;A 再继续操作。
线程池
线程池流程图如下:

线程池(Thread Pool)是一种多线程管理机制,用于提高应用程序的性能和资源利用率。线程池通过预先创建一定数量的线程,并在需要执行任务时重复使用这些线程,而不是每次都创建和销毁线程,从而减少线程创建和销毁的开销。
通常使用GCD(Grand Central Dispatch)和NSOperationQueue来实现线程池的功能。
死锁问题
场景一:
- (void)viewDidLoad {[super viewDidLoad];[self test1];
}- (void)test1 {NSLog(@"任务1------");dispatch_queue_t queue = dispatch_get_main_queue();dispatch_sync(queue, ^{NSLog(@"任务2------");});NSLog(@"任务3--------");
}
主队列+同步执行:主队列是串行队列,任务test1在主队列中,在test1中同步执行了任务2。同步执行的队列中,当前任务执行完之前会阻塞线程。而主线程每次只能执行一个任务,因此test1任务要等待任务2执行完才能完成执行,而任务2要等待test1执行完才能执行,因此两个任务互相卡住了,发生了死锁。
场景二:
- (void)test2 {NSLog(@"任务1------");// 创建一个串行队列dispatch_queue_t queue = dispatch_queue_create("com.longchi", DISPATCH_QUEUE_SERIAL);dispatch_async(queue, ^{ // 异步任务NSLog(@"任务2------");dispatch_sync(queue, ^{NSLog(@"任务3------");});NSLog(@"任务4--------");});NSLog(@"任务5--------");
}
在这段代码中,queue是一个串行队列。向其中异步执行一个任务,因为异步不会阻塞当前线程,因此任务1和5都可以执行。在异步方法内又同步执行了一个方法,又因为同步执行中的方法执行完成前会阻塞当前线程,因此任务3执行完成前会一直阻塞线程,但是这个同步方法是处于串行队列的,因此要执行任务3要等待任务4执行完,但是任务4又要等任务3执行完才能执行,因此发生了死锁,跟那个主队列+同步执行差不多。
相关文章:

iOS——GCD再学习
GCD 使用GCD好处,具体如下: GCD 可用于多核的并行运算;GCD 会自动利用更多的 CPU 内核(比如双核、四核);GCD 会自动管理线程的生命周期(创建线程、调度任务、销毁线程);…...

SVD降维
文章目录 一、SVD降维的基本原理二、SVD降维的步骤三、SVD降维的优点四、SVD降维的应用五、代码应用六、SVD降维的局限性 一、SVD降维的基本原理 SVD是线性代数中的一种技术,它将一个矩阵A分解为三个矩阵的乘积:A UΣV^T。其中,U和V是正交矩…...

剖析Cookie的工作原理及其安全风险
Cookie的工作原理主要涉及到HTTP协议中的状态管理。HTTP协议本身是无状态的,这意味着每次请求都是独立的,服务器不会保留之前的请求信息。为了在无状态的HTTP协议上实现有状态的会话,引入了Cookie机制。 1. Cookie定义 Cookie,也…...

规控面试复盘
目录 前言 一、京东方 1、CPP和C的区别是什么? 2、讲一下的ROS的话题通信 二、Momenta(泊车部门实习面试) 1、MPC的预测时间步是多少? 2、MPC的代价函数考虑的是什么? 三、九识 1、智能指针有哪些优缺点? 优点: 缺点: 2、Protobuf的数据传输效率为什么更高…...

Elastic Stack--ES集群加密及Kibana的RBAC实战
前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 学习B站博主教程笔记: 最新版适合自学的ElasticStack全套视频(Elk零基础入门到精通教程)Linux运维必备—Elastic…...

【开源免费】基于SpringBoot+Vue.JS图书个性化推荐系统(JAVA毕业设计)
本文项目编号 T 015 ,文末自助获取源码 \color{red}{T015,文末自助获取源码} T015,文末自助获取源码 目录 一、系统介绍1.1 业务分析1.2 用例设计1.3 时序设计 二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究…...

STM32(F103ZET6)第十九课:FreeRtos的移植和使用
目录 需求一、FreeRtos简介二、移植FreeRtos1.复制代码2.内存空间分配和内核相关接口3.FreeRtosConfig4.添加到工程中三、任务块操作1.任务四种状态2.创建任务过程 需求 1.将FreeRtos(嵌入式实时操作系统)移植到STM32中。 2.在该系统中实现任务的创建、…...

索尼的Web3蓝图:从技术创新到现实应用的全方位布局
近年来,随着区块链技术和加密资产的迅猛发展,全球科技巨头纷纷投入其中,力图在Web3浪潮中占据一席之地。作为传统科技行业的巨头,索尼(Sony)也不甘落后,积极推动其Web3战略布局,展现出其在新兴领域的强烈野…...
探索Java中的分布式消息队列与事件总线:架构、实现与最佳实践
引言 在现代分布式系统中,消息队列和事件总线已经成为实现松耦合、高扩展性和高可用性架构的关键组件。无论是微服务架构、事件驱动架构,还是实时数据处理,消息队列和事件总线都扮演着至关重要的角色。本文将深入探讨Java中的分布式消息队列…...

HTML零基础教程(超详细)
一、什么是HTML HTML,全称超文本标记语言(HyperText Markup Language),是一种用于创建网页的标准标记语言。它通过一系列标签来定义网页的结构、内容和格式。HTML文档是由HTML元素构成的文本文件,这些元素包括标题、段…...

011.Python爬虫系列_bs4解析
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数…...

django摄影竞赛小程序论文源码调试讲解
2系统关键技术及工具简介 系统开发过程中设计的关键技术是系统的核心,而开发工具则会影响的项目开发的进程和效率。第二部分便描述了系统的设计与实现等相关开发工具。 2.1 Python简介 Python 属于一个高层次的脚本语言,以解释性,编译性&am…...
Unity-OpenCV-Imgproc函数概览
OpenCV-Imgproc函数概览 函数名功能描述createLineSegmentDetector创建一个智能指针到 LineSegmentDetector 对象并初始化它。此算法用于检测图像中的线段。getGaussianKernel返回高斯滤波器的系数。这些系数用于平滑图像或进行高斯模糊。getDerivKernels返回计算图像空间导数的…...

水晶连连看 - 无限版软件操作说明书
水晶连连看 – 无限版游戏软件使用说明书 文章目录 水晶连连看 – 无限版游戏软件使用说明书1 引言1.1 编写目的1.2 项目名称1.3 项目背景1.4 项目开发环境 2 概述2.1 目标2.2 功能2.3 性能 3 运行环境3.1 硬件3.2 软件 4 使用说明4.1 游戏开始界面4.2 游戏设定4.2.1 游戏帮助4…...
目标检测-YOLOv3
YOLOv3介绍 YOLOv3 (You Only Look Once, Version 3) 是 YOLO 系列目标检测模型的第三个版本,相较于 YOLOv2 有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3 的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对 YOLOv3 …...
vscode好用的快捷键整理~
vscode好用的快捷键 将当前行复制并插入到上一行 shift alt ↑将当前行复制并插入到上一行 shift alt ↓将光标复制到上一行 ctrl alt ↑将光标复制到下一行 ctrl alt ↓删除当前行 ctrl x 本身是剪切当前行,也可以作为删除当前行来用选中下一个相同的片段…...
Docker in Docker 实践 on mac
在尝试tekton构建ci pipeline是,需要在k8 pod里build image,于是研究了如何docker in docker。 1. 编写自己的dind docker image FROM docker:20.10.16-dind ENV DOCKER_HOST unix:///var/run/docker.sock 2. docker build 自己的dind docker image并…...
Flask-Session扩展,使用Redis存储会话数据
深入理解Flask-session扩展Redis Flask 应用中使用 flask-session 扩展将 session 数据存储在 Redis 中是一种高效且可扩展的方法,特别是在需要处理大量用户或需要分布式部署的应用中。以下是如何在 Flask 应用中配置 flask-session 以使用 Redis 存储 session 的步…...

urdf ( xacro ) 的 collision碰撞参数设置
目录 写在前面的话整体流程1 URDF 文件结构2 查看原始碰撞形状描述3 加入简单碰撞形状描述方法一 Meshlab 自动测量方法二 人为测量 4 加入XACRO函数简化描述 最终结果展示侧视图正视图碰撞几何体中心点设置不对出现的结果 写在前面的话 本文使用的 URDF 文件是由 solidworks …...

iOS——方法交换Method Swizzing
什么是方法交换 Method Swizzing是发生在运行时的,主要用于在运行时将两个Method进行交换,我们可以将Method Swizzling代码写到任何地方,但是只有在这段Method Swilzzling代码执行完毕之后互换才起作用。 利用Objective-C Runtimee的动态绑定…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...