当前位置: 首页 > news >正文

梯度弥散问题及解决方法

梯度弥散问题及解决方法

  • 简要阐述梯度弥散发生的原因以及现象
  • 针对不同发生原因有什么解决方案
    • 1. 使用ReLU及其变体激活函数
    • 2. 权重初始化
    • 3. 批量归一化(Batch Normalization)
    • 4. 残差连接(Residual Connections)
    • 5. 梯度裁剪(Gradient Clipping)

简要阐述梯度弥散发生的原因以及现象

梯度弥散(Gradient Vanishing)是深度学习中一个常见的问题,尤其在训练深层神经网络时更为显著。梯度弥散指的是在反向传播过程中,随着误差梯度在网络中逐层传递,梯度值逐渐减小,最终导致在网络较浅层时梯度接近于零。这种现象导致靠近输入层的权重更新非常缓慢,甚至几乎不更新,严重影响了网络的训练效率和效果。

在这里插入图片描述

梯度弥散的主要原因包括:

  1. 激活函数的饱和性:传统激活函数如Sigmoid和Tanh在输入值很大或很小时,其导数接近于零,导致梯度在反向传播过程中迅速减小。
  2. 网络深度:随着网络层数的增加,梯度连乘效应加剧,使得梯度值迅速减小。

针对不同发生原因有什么解决方案

针对梯度弥散问题,有多种解决方案,以下是几种常用的方法:

1. 使用ReLU及其变体激活函数

ReLU(Rectified L

相关文章:

梯度弥散问题及解决方法

梯度弥散问题及解决方法 简要阐述梯度弥散发生的原因以及现象针对不同发生原因有什么解决方案1. 使用ReLU及其变体激活函数2. 权重初始化3. 批量归一化(Batch Normalization)4. 残差连接(Residual Connections)5. 梯度裁剪(Gradient Clipping)简要阐述梯度弥散发生的原因…...

Python中pickle文件操作及案例-学习篇

一、简介 Pickle 算是Python的一种数据序列化方法,它能够将对象转换为字节流,进而可以保存到文件中或通过网络传输给其他Python程序。这种方式非常适合快速简便地保存复杂的数据结构,例如列表、字典、自定义对象等。 二、pickle文件的读写 …...

微服务日常总结

1.当我们在开发中,需要连接多个库时,可以在yml中进行配置。 当在查询的时候,跨库时,需要通过DS 注解来指定,需要yml配置需要保持一致。 2. 当我们想把数据存入到clob类型中,需要再字段 的占位符后面加上j…...

C和C++内存管理

C和C内存管理 (一)C/C内存分布(二)C语言动态内存管理(三)c内存管理(3.1)new/delete操作内置类型(3.2)new和delete操作自定义类型 (四)…...

axios取消请求

1.使用CancelToken: class RequestHttp {service: AxiosInstance;public constructor(config: AxiosRequestConfig) {// 实例化axiosthis.service axios.create(config);/*** description 请求拦截器* 客户端发送请求 -> [请求拦截器] -> 服务器*/this.service.interce…...

阿里中间件——diamond

一、前言 最近工作不忙闲来无事,仔细分析了公司整个项目架构,发现用到了很多阿里巴巴集团开源的框架,今天要介绍的是中间件diamond. 二、diamond学习笔记 1、diamond简介 diamond是一个管理持久配置(持久配置是指配置数据会持久化…...

pyenv -- 一款macos下开源的多版本python环境安装管理工具 国内加速版安装 + 项目venv虚拟环境 pip加速 使用与总结

一个比较方便实用的python多版本环境安装管理工具, 阿里云加速版本 pyenv安装方法: 直接克隆本下面到你的本地目录,然后设置环境变量即可 git clone https://gitee.com/tekintian/pyenv.git ~/.pyenv 环境变量配置 在~/.bash_profile 或者 .zshrc 中增加环境变量 export …...

VitePress 自定义 CSS 指南

VitePress 是一款基于 Vite 和 Vue 3 的静态网站生成器,专为文档编写而设计。尽管 VitePress 提供了丰富的默认主题,但在某些情况下,我们可能需要对其进行更深入的定制以满足特定的视觉需求。本文将详细介绍如何通过覆盖根级别的 CSS 变量来自…...

【舍入,取整,取小数,取余数丨Excel 函数】

数学函数 1、Round函数 Roundup函数 Rounddown函数 取整:(Int /Trunc)其他舍入函数: 2、Mod函数用Mod函数提取小数用Mod函数 分奇偶通过身份证号码判断性别 1、Round函数 Roundup函数 Rounddown函数 Round(数字,保留几位小数)(四…...

无线信道中ph和ph^2的场景

使用 p h ph ph的情况: Rayleigh 分布的随机变量可以通过两个独立且相同分布的零均值、高斯分布的随机变量表示。设两个高斯随机变量为 X ∼ N ( 0 , σ 2 ) X \sim \mathcal{N}(0, \sigma^2) X∼N(0,σ2)和 Y ∼ N ( 0 , σ 2 ) Y \sim \mathcal{N}(0, \sigma^2)…...

HCIA--实验五:静态路由综合实验

静态路由综合实验 一、实验内容: 1.需求/目的: 在ensp模拟器中使用四个路由器,并且在路由器上创建loopback接口,相当于连接了一台主机,通过配置静态路由的方式实现全网通。 二、实验过程 1.道具: 4个…...

不同vlan之间的通信方法

1.通过路由器的物理接口 1.给PC1,PC2配置IP地址,网关2.进入交换机配置vlan,交换机所有口都配置access口并绑定vlan3.配置路由器,进入路由器的两个接口配置网关IP和掩码缺点:成本高,每增加一个vlan就需要一个物理端口和…...

java后端框架

框架就是对技术的封装。 本篇博客小博主首先对以后我们要学习的框架进行简单概述,使大家对框架有一定的基本概念。 一.mybatis mybatis就是对jdbc(数据库连接)进行封装,避免了jdbc中手动设置参数,手动映射结果的操作。…...

如何在Word中插入复选框

如何在Word中插入复选框:详细教程与技巧 在Word中插入复选框是一项非常实用的技巧,尤其是在制作问卷调查、待办事项清单、交互式表单或文档中需要用户进行选择时,复选框不仅能提高文档的功能性,还能显得更加专业。本文将详细讲解…...

Android 源码中jni项目 加载so目录小结

Android 源码中jni项目 加载so目录小结 文章目录 Android 源码中jni项目 加载so目录小结一、前言二、so目录验证测试1、jni so文件错误报错(1)报错1 - 未找到so文件:(2)报错2 - so文件中未找到native方法: …...

24/9/6算法笔记 kaggle 房屋价格

预测模型主要分为两大类: 回归模型:当你的目标变量是连续的数值时,你会使用回归模型进行预测。回归模型试图找到输入特征和连续输出之间的关联。一些常见的回归模型包括: 线性回归(Linear Regression)岭回归…...

【MA35D1】buildroot 编译使用经验

文章目录 芯片介绍Buildroot开发Linux实践环境搭建代码获取编译执行步骤(仅适用于我公司产品) 后续有需要更改的输出文件目录 芯片介绍 NuMicro MA35D1系列为一颗异核同构的多核心微处理器,适用于高端 Edge IIoT Gateway。它是基于双核 64 位…...

排查 MyBatis XML 配置中的 IF 语句与传值名称不匹配的 Bug

文章目录 本文档只是为了留档方便以后工作运维,或者给同事分享文档内容比较简陋命令也不是特别全,不适合小白观看,如有不懂可以私信,上班期间都是在得 前言,在改一个bug得时候发现一个有意思得问题,就是myb…...

数字证书与公钥基础设施

关注这个证书的其他相关笔记:NISP 一级 —— 考证笔记合集-CSDN博客 0x01:数字证书 数字证书是由第三方可信机构(一般是证书服务器)颁发的数字证书,可以证明身份的可信度。 数字证书具有以下特点以及性质&#xff1a…...

拥抱数智化,JNPF低代码平台如何推动企业转型升级

随着信息技术的飞速发展,企业面临的市场竞争日益激烈,传统的业务流程和管理模式已经难以满足快速变化的市场需求。数智化转型成为企业持续发展的必由之路。在这一过程中,低代码开发平台扮演了至关重要的角色。本文将探讨JNPF低代码平台如何助…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...