当前位置: 首页 > news >正文

路径规划——RRT算法

路径规划——RRT算法

算法原理

RRT算法的全称是快速扩展随机树算法(Rapidly Exploring Random Tree),它的思想是选取一个初始点作为根节点,通过随机采样,增加叶子节点的方式,生成一个随机扩展树,当随机树中的叶子节点包含了目标点或进入了目标区域,边可以在随机树中通过回溯的方式,找到这条从初始点到目标点的路径。

此算法的重点随机采样+步⻓限制+碰撞检测

算法流程:
1.初始化:以起点start为根节点,创建一棵树(通常用二叉树表示),树的根节点表示起始位置。
2.随机采样:在搜索空间中随机生成一个点x_rand。这个点可能在自由空间中,也可能在障碍物中。
3.寻找最近的节点:在当前的树中找到距离x_rand最近的节点x_near
4.扩展树:从x_near沿着指向x_rand的方向移动一小步,生成一个新的节点x_new。如果x_new在自由空间中(即不与障碍物碰撞),则将x_new加入到树中,并将x_nearn_new用一条边连接。
5.检查目标:检查x_new是否在目标区域附近,这里的“附近”可以设置一个搜索距离来量化。如果是,则生成一条路径从起点到x_new,并结束算法。
6.迭代:重复步骤2~步骤5,直到找到目标点goal,或达到预设的迭代次数。

由于RRT采用随机采样的方法,RRT生成的路径通常不一定是最优路径,但可以通过多次运行RRT或结合其他优化算法来获得更优路径。

在这里插入图片描述

算法实现

import numpy as np
import random
import math
from itertools import combinations
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.patches as patchesclass RRT:def __init__(self,start,goal,obstacles,board_size,max_try,max_dist,goal_sample_rate,env) -> None:self.start = self.Node(start,None,0)self.goal = self.Node(goal,None,0)self.obstacles = obstaclesself.board_size = board_sizeself.max_try = max_try # Number of iterationsself.max_dist = max_dist # Maximum sampling distanceself.goal_sample_rate = goal_sample_rateself.env = envself.inflation = 1self.searched = []class Node:def __init__(self,position,parent,cost):self.position = positionself.parent = parentself.cost = costdef run(self):cost,path = self.plan()self.visualize(cost,path)def plan(self):self.searched.append(self.start)closed_list = {self.start.position: self.start}# plan max_try timesfor i in range(self.max_try):node_rand = self.get_random_node()# visitedif node_rand.position in closed_list:continue# Get the nearest neighbor nodenode_near = self.get_nearest_neighbor(list(closed_list.values()),node_rand)# Get the new nodenode_new = self.get_new_node(node_rand,node_near)if node_new:closed_list[node_new.position] = node_newself.searched.append(node_new)dist = self.distance(node_new,self.goal)# Found goal successfullyif dist <= self.max_dist and not self.isCollision(node_new,self.goal):self.searched.append(self.goal)self.goal.parent = node_newself.goal.cost = node_new.cost + self.distance(self.goal,node_new)closed_list[self.goal.position] = self.goalcost, path= self.extractPath(closed_list)print("Exploring {} nodes.".format(i))return cost,pathreturn 0,Nonedef get_random_node(self) :"""Return a random node."""if random.random()>self.goal_sample_rate:node = self.Node((random.uniform(0,self.env.height),random.uniform(0,self.env.width)),None,0)else:node = self.Node(self.goal.position,None,0)return nodedef get_nearest_neighbor(self,node_list,node) -> Node:"""Return node that is nearest to 'node' in node_list"""dist = [self.distance(node, n) for n in node_list]node_near = node_list[int(np.argmin(dist))]return node_neardef get_new_node(self,node_rand,node_near):"""Return node found based on node_near and node_rand."""dx = node_rand.position[0] - node_near.position[0]dy = node_rand.position[1] - node_near.position[1]dist = math.hypot(dx,dy)theta = math.atan2(dy, dx)d = min(self.max_dist,dist)position = ((node_near.position[0]+d*math.cos(theta)),node_near.position[1]+d*math.sin(theta))node_new = self.Node(position,node_near,node_near.cost+d)if self.isCollision(node_new, node_near):return Nonereturn node_newdef isCollision(self,node1,node2):"""Judge collision from node1 to node2 """if self.isInObstacles(node1) or self.isInObstacles(node2):return Truefor rect in self.env.obs_rectangle:if self.isInterRect(node1,node2,rect):return Truefor circle in self.env.obs_circle:if self.isInterCircle(node1,node2,circle):return Truereturn Falsedef distance(self,node1,node2):dx = node2.position[0] - node1.position[0]dy = node2.position[1] - node1.position[1]return math.hypot(dx,dy)def isInObstacles(self,node):"""Determine whether it is in obstacles or not."""x,y = node.position[0],node.position[1]for (ox,oy,w,h) in self.env.boundary:if ox-self.inflation<x<ox+w+self.inflation and oy-self.inflation<y<oy+h+self.inflation:return Truefor (ox,oy,w,h) in self.env.obs_rectangle:if ox-self.inflation<x<ox+w+self.inflation and oy-self.inflation<y<oy+h+self.inflation:return Truefor (ox,oy,r) in self.env.obs_circle:if math.hypot(x-ox,y-oy)<=r+self.inflation:return Truereturn Falsedef isInterRect(self,node1,node2,rect):""""Judge whether it will cross the rectangle when moving from node1 to node2"""ox,oy,w,h = rectvertex = [[ox-self.inflation,oy-self.inflation],[ox+w+self.inflation,oy-self.inflation],[ox+w+self.inflation,oy+h+self.inflation],[ox-self.inflation,oy+h+self.inflation]]x1,y1 = node1.positionx2,y2 = node2.positiondef cross(p1,p2,p3):x1 = p2[0]-p1[0]y1 = p2[1]-p1[1]x2 = p3[0]-p1[0]y2 = p3[1]-p1[0]return x1*y2 - x2*y1for v1,v2 in combinations(vertex,2):if max(x1,x2) >= min(v1[0],v2[0]) and min(x1,x2)<=max(v1[0],v2[0]) and \max(y1,y2) >= min(v1[1],v2[1]) and min(y1,y2) <= max(v1[1],v2[1]):if cross(v1,v2,node1.position) * cross(v1,v2,node2.position)<=0 and \cross(node1.position,node2.position,v1) * cross(node1.position,node2.position,v2):return Truereturn Falsedef isInterCircle(self,node1,node2,circle):"""Judge whether it will cross the circle when moving from node1 to node2"""ox,oy,r = circledx = node2.position[0] - node1.position[0]dy = node2.position[1] - node1.position[1]# Projectiont = ((ox - node1.position[0]) * dx + (oy - node1.position[1]) * dy) / (dx * dx + dy * dy)# The projection point is on line segment ABif 0 <= t <= 1:closest_x = node1.position[0] + t * dxclosest_y = node1.position[1] + t * dy# Distance from center of the circle to line segment ABdistance = math.hypot(ox-closest_x,oy-closest_y)return distance <= r+self.inflationreturn Falsedef extractPath(self,closed_list):""""Extract the path based on the closed list."""node = closed_list[self.goal.position]path = [node.position]cost = node.costwhile node != self.start:parent = node.parentnode_parent = closed_list[parent.position]node = node_parentpath.append(node.position)return cost,pathdef visualize(self, cost, path):"""Plot the map."""....

结果图:

在这里插入图片描述

相关文章:

路径规划——RRT算法

路径规划——RRT算法 算法原理 RRT算法的全称是快速扩展随机树算法(Rapidly Exploring Random Tree)&#xff0c;它的思想是选取一个初始点作为根节点&#xff0c;通过随机采样&#xff0c;增加叶子节点的方式&#xff0c;生成一个随机扩展树&#xff0c;当随机树中的叶子节点…...

OPCUA-PLC

下载opcua服务器(有PLC可以直连),UaAnsiCServer下载路径 双击运行如下,Endpoint显示opcua服务路径 opc.tcp://DESKTOP-9SD7K4B:48020 下载opcua客户端(类似编写代码连接操作),UaExpert下载路径 如果连接失败,有一个授权认证,点击同意就行 java代码实现连接opcUA操作 pom.…...

在Windows系统上部署PPTist并实现远程访问

在Windows系统上部署PPTist并实现远程访问 前言PPTist简介本地部署PPTist步骤1&#xff1a;获取PPTist步骤2&#xff1a;安装依赖步骤3&#xff1a;运行PPTist 使用PPTist远程访问PPTist步骤1&#xff1a;安装Cpolar步骤2&#xff1a;配置公网地址步骤3&#xff1a;配置固定公网…...

【Grafana】Prometheus结合Grafana打造智能监控可视化平台

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…...

隐私计算实训营:SplitRec:当拆分学习遇上推荐系统

拆分学习的概念 拆分学习的核心思想是拆分网络结构。每一个参与方拥有模型结构的一部分&#xff0c;所有参与方的模型合在一起形成一个完整的模型。训练过程中&#xff0c;不同参与方只对本地模型进行正向或者反向传播计算&#xff0c;并将计算结果传递给下一个参与方。多个参…...

存在nginx版本信息泄露(请求头中存在nginx中间件版本信息)

在Nginx的配置文件中&#xff0c;server_tokens指令用于控制Nginx在HTTP响应头中包含的服务器版本信息&#xff0c;默认为true&#xff0c;开启状态。当设置为off时&#xff0c;Nginx将不会在响应头中包含任何服务器版本信息&#xff0c;仅显示“Server: nginx”这一行&#xf…...

在js中观察者模式讲解

在JavaScript中,观察者模式(Observer Pattern)是一种设计模式,允许一个对象(被观察者,Subject)维护一个依赖它的对象列表(观察者,Observer),并在它自身状态发生变化时自动通知这些观察者。观察者模式的典型使用场景包括事件系统、数据绑定和实时更新等情况。 一 、…...

java常用面试题-基础知识分享

什么是Java&#xff1f; Java是一种高级编程语言&#xff0c;旨在提供跨平台的解决方案。它是一种面向对象的语言&#xff0c;具有简单、结构化、可移植、可靠、安全等特点。 Java的主要特点是什么&#xff1f; Java的主要特点包括&#xff1a; 简单性&#xff1a;Java的语法…...

iOS——runLoop

什么是runloop RunLoop实际上就是一个对象&#xff0c;这个对象管理了其需要处理的事件和消息&#xff0c;并提供了一个入口函数来执行相应的处理逻辑。线程执行了这个函数后&#xff0c;就会处于这个函数内部的循环中&#xff0c;直到循环结束&#xff0c;函数返回。 RunLoo…...

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别&#xff1a; 当你在一个模块&…...

0基础学习爬虫系列:Python环境搭建

1.背景 当前网络资源更新非常快&#xff0c;然后对应自己感兴趣的内容&#xff0c;每天盯着刷网站又太费时间。我在尝试借助Ai&#xff0c;搭建一套自己知识抓取更新提醒的系统&#xff0c;这样可以用极少的时间&#xff0c;关注到自己感兴趣的信息。 其实&#xff0c;这套逻辑…...

Unity Shader实现简单的各向异性渲染(采用各向异性形式的GGX分布)

目录 准备工作 BRDF部分 Unity部分 代码 实现的效果 参考 最近刚结束GAMES202的学习&#xff0c;准备慢慢过渡到GAMES103。GAMES103的作业框架为Unity&#xff0c;并没有接触过&#xff0c;因此准备先学一点Unity的使用。刚好101和202都是渲染相关的&#xff0c;因此先学习…...

React开源框架之Refine

React Refine 是一个基于 React 的开源框架&#xff0c;它旨在帮助开发者快速构建企业级后台管理系统&#xff08;Admin Panel&#xff09;。Refine 是由 Retax 演变而来&#xff0c;它提供了一套完整的解决方案&#xff0c;用于构建 CRUD&#xff08;创建、读取、更新、删除&a…...

【iOS】——渲染原理与离屏渲染

图像渲染流水线&#xff08;图像渲染流程&#xff09; 图像渲染流程大致分为四个部分&#xff1a; Application 应用处理阶段&#xff1a;得到图元Geometry 几何处理阶段&#xff1a;处理图元Rasterization 光栅化阶段&#xff1a;图元转换为像素Pixel 像素处理阶段&#xff1…...

详解CSS

目录 CSS 语法 引入方式 选择器 标签选择器 类选择器 ID选择器 通配符选择器 复合选择器 常用CSS color font-size border width和height padding 外边距 CSS CSS(Cascading Style Sheet)&#xff0c;层叠样式表, ⽤于控制⻚⾯的样式. CSS 能够对⽹⻚中元素位置…...

Python执行cmd命令

在Python中执行cmd命令&#xff0c;可以使用内置的subprocess模块。以下是一个简单的例子&#xff0c;展示如何执行一个cmd命令并获取输出。 import subprocess# 要执行的cmd命令 cmd "dir"# 使用subprocess.run来执行命令 result subprocess.run(cmd, shellTrue,…...

基于激光雷达的无人机相互避障

本框架是基于激光雷达的无人机群自主避障代码&#xff1a; 其主体框架利用ORCA算法&#xff0c;他是经典的多智能体相互避障算法&#xff0c;此版本只能规避动态障碍物&#xff0c;不能规避环境形成的静态障碍物我们对ORVA算法稍作修改&#xff0c;使其可以分布式部署&#xff…...

Zookeeper基本原理

1.什么是Zookeeper? Zookeeper是一个开源的分布式协调服务器框架&#xff0c;由Apache软件基金会开发&#xff0c;专为分布式系统设计。它主要用于在分布式环境中管理和协调多个节点之间的配置信息、状态数据和元数据。 Zookeeper采用了观察者模式的设计理念&#xff0c;其核心…...

【生日视频制作】西游记孙悟空师徒提笔毛笔书法横幅AE模板修改文字软件生成器教程特效素材【AE模板】

生日视频制作教程西游记孙悟空师徒提笔毛笔书法横幅AE模板修改文字特效广告生成神器素材祝福玩法AE模板工程 怎么如何做的【生日视频制作】西游记孙悟空师徒提笔毛笔书法横幅AE模板修改文字软件生成器教程特效素材【AE模板】 生日视频制作步骤&#xff1a; 下载AE模板 安装AE…...

春日美食汇:基于SpringBoot的订餐平台

2 系统关键技术 2.1JSP技术 JSP(Java脚本页面)是Sun和许多参与建立的公司所提倡的动态web技术。将Java程序添加到传统的web页面HTML文件()。htm,。Html) [1]。 JSP这种能够独立使用的编程语言可以嵌入在html语言里面运行&#xff0c;正因为JSP参照了许多编程语言的特性&#xf…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...