当前位置: 首页 > news >正文

基于Python的自然语言处理系列(2):Word2Vec(负采样)

        在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(Negative Sampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。

1. Word2Vec(负采样)原理

1.1 负采样的背景

        在Word2Vec的Skip-gram模型中,我们的目标是通过给定的中心词预测其上下文词。然而,当词汇表非常大时,计算所有词的预测概率会变得非常耗时。为了解决这个问题,负采样技术被引入。

1.2 负采样的工作原理

        负采样通过从词汇表中随机选择一些词作为负样本来简化训练过程。具体来说,除了正样本(即真实的上下文词),我们还为每个正样本选择若干个负样本。模型的目标是最大化正样本的预测概率,同时最小化负样本的预测概率。这样,训练过程只需要考虑部分词汇,从而减少了计算量。

2. Word2Vec(负采样)实现

        我们将通过以下步骤来实现带有负采样的Word2Vec模型:

2.1 定义简单数据集

        首先,我们定义一个简单的语料库来演示负采样的应用。

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F# 定义语料库
corpus = ["apple banana fruit", "banana apple fruit", "banana fruit apple","dog cat animal", "cat animal dog", "cat dog animal"]corpus = [sent.split(" ") for sent in corpus]
print(corpus)

2.2 数据预处理

        获取词序列和唯一词汇,并进行数值化处理。

# 获取词汇表
flatten = lambda l: [item for sublist in l for item in sublist]
vocab = list(set(flatten(corpus)))
print(vocab)# 数值化
word2index = {w: i for i, w in enumerate(vocab)}
print(word2index)# 词汇表大小
voc_size = len(vocab)
print(voc_size)# 添加UNK标记
vocab.append('<UNK>')
word2index['<UNK>'] = 0
index2word = {v: k for k, v in word2index.items()}

2.3 准备训练数据

        定义一个函数用于生成Skip-gram模型的训练数据。

def random_batch(batch_size, word_sequence):skip_grams = []for sequence in word_sequence:for i, word in enumerate(sequence):context = [sequence[j] for j in range(max(0, i - 1), min(len(sequence), i + 2)) if j != i]for ctx_word in context:skip_grams.append((word, ctx_word))return skip_grams

2.4 负采样

        实现负采样的训练过程。

class Word2Vec(nn.Module):def __init__(self, vocab_size, embedding_dim):super(Word2Vec, self).__init__()self.in_embed = nn.Embedding(vocab_size, embedding_dim)self.out_embed = nn.Embedding(vocab_size, embedding_dim)self.in_embed.weight.data.uniform_(-1, 1)self.out_embed.weight.data.uniform_(-1, 1)def forward(self, center_word, context_word):in_embeds = self.in_embed(center_word)out_embeds = self.out_embed(context_word)scores = torch.matmul(in_embeds, out_embeds.t())return scores# Initialize model
embedding_dim = 10
model = Word2Vec(voc_size, embedding_dim)
optimizer = optim.SGD(model.parameters(), lr=0.01)

2.5 训练模型

        进行模型训练,并应用负采样技术来优化模型。

def train_word2vec(model, skip_grams, epochs=10):for epoch in range(epochs):total_loss = 0for center, context in skip_grams:center_idx = torch.tensor([word2index[center]], dtype=torch.long)context_idx = torch.tensor([word2index[context]], dtype=torch.long)optimizer.zero_grad()scores = model(center_idx, context_idx)target = torch.tensor([1], dtype=torch.float32)loss = F.binary_cross_entropy_with_logits(scores.squeeze(), target)loss.backward()optimizer.step()total_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {total_loss}')# Prepare skip-gram pairs
skip_grams = random_batch(10, corpus)
train_word2vec(model, skip_grams)

结语

        在本篇文章中,我们详细探讨了Word2Vec模型中的负采样技术,并通过代码实现展示了如何在Python中应用这一技术来优化Skip-gram模型。负采样通过减少计算量,提高了模型的训练效率,使得在大规模数据集上的训练变得可行。

        在下一篇文章中,我们将继续探讨另一种词向量表示方法——GloVe(Global Vectors for Word Representation)。敬请期待!

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

相关文章:

基于Python的自然语言处理系列(2):Word2Vec(负采样)

在本系列的第二篇文章中&#xff0c;我们将继续探讨Word2Vec模型&#xff0c;这次重点介绍负采样&#xff08;Negative Sampling&#xff09;技术。负采样是一种优化Skip-gram模型训练效率的技术&#xff0c;它能在大规模语料库中显著减少计算复杂度。接下来&#xff0c;我们将…...

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎&#xff0c;细嗅蔷薇。你好朋友&#xff0c;这里是锅巴的C\C学习笔记&#xff0c;常言道&#xff0c;不积跬步无以至千里&#xff0c;希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目&#xff1a; 牛牛发明了一种新的四舍五…...

大数据之Flink(六)

17、Flink CEP 17.1、概念 17.1.1、CEP CEP是“复杂事件处理&#xff08;Complex Event Processing&#xff09;”的缩写&#xff1b;而 Flink CEP&#xff0c;就是 Flink 实现的一个用于复杂事件处理的库&#xff08;library&#xff09;。 总结起来&#xff0c;复杂事件处…...

设计模式学习[5]---装饰模式

文章目录 前言1. 原理阐述2. 举例2.1 人装饰方案一2.2 人装饰方案二2.3 人装饰方案三 总结 前言 近期在给一个已有的功能拓展新功能时&#xff0c;基于原有的设计类图进行讨论。其中涉及到了装饰模式&#xff0c;因为书本很早已经看过一遍&#xff0c;所以谈及到这个名词的时候…...

3.C_数据结构_栈

概述 什么是栈&#xff1a; 栈又称堆栈&#xff0c;是限定在一段进行插入和删除操作的线性表。具有后进先出(LIFO)的特点。 相关名词&#xff1a; 栈顶&#xff1a;允许操作的一端栈底&#xff1a;不允许操作的一端空栈&#xff1a;没有元素的栈 栈的作用&#xff1a; 可…...

Debian11安装DolphinScheduler

安装地址 前置准备工作 JDK安装 下载JDK (1.8)&#xff0c;安装并配置 JAVA_HOME 环境变量&#xff0c;并将其下的 bin 目录追加到 PATH 环境变量中。如果你的环境中已存在&#xff0c;可以跳过这步 二进制包安装DolphinScheduler 依赖 apt-get install psmisc 二进制安…...

C语言深度剖析--不定期更新的第五弹

const关键字 来看一段代码&#xff1a; #include <stdio.h> int main() {int a 10;a 20;printf("%d\n", a);return 0; }运行结果如下&#xff1a; 接下来我们在上面的代码做小小的修改&#xff1a; #include <stdio.h> int main() {const int a 1…...

python之事务

事务&#xff08;Transaction&#xff09;是数据库管理系统&#xff08;DBMS&#xff09;中的一个重要概念&#xff0c;用于确保一组数据库操作要么全部成功&#xff0c;要么全部失败&#xff0c;从而保证数据的一致性和完整性。 事务ACID 特性 事务具有以下四个特性&#xf…...

文件加密软件都有哪些?推荐6款文件加密工具

不久前&#xff0c;一家知名科技公司的内部文件在未经授权的情况下被泄露到了网络上&#xff0c;其中包括了公司的核心技术蓝图、客户名单及未来战略规划。这一事件不仅给公司带来了巨大的经济损失&#xff0c;还严重损害了企业的声誉。 如何防止以上事件的发生呢&#xff0c;文…...

Docker中的容器内部无法使用vi命令怎么办?

不知道你是否遇到过,在修改容器内部的配置的时候,有时候会提示vi命令不可用。尝试去安装vi插件,好像也不是很容易,有什么办法可以帮助我们修改这个配置文件呢? 解决办法 这时候,我们就需要用到docker cp 命令了,它可以帮助我们把容器内部的文件复制到宿主机上,也可以将…...

【Linux系统编程】TCP实现--socket

使用套接字socket实现服务器和客户端之间的TCP通信。 流程如下&#xff1a; 实现代码&#xff1a; /* server.c */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <arpa/inet.h> #include <s…...

企业微信hook协议接口,聚合群聊客户管理工具开发

服务提供了丰富的API和SDK&#xff0c;可以在企微的功能之上进行应用开发和功能扩展 自建应用可以调用企微hook或协议提供的接口来实现数据交互&#xff0c;可以直接调用hook或协议接口提供的功能来进行消息的发送与接收、用户管理、应用管理等操作&#xff0c;通过接口可以实…...

Selenium集成Sikuli基于图像识别的自动化测试

看起来您提供了一个链接,但目前我并没有从该链接获取到具体的信息内容。不过,如果您希望了解如何将Sikuli集成到Selenium中,我可以为您提供一些基本的指南。 什么是Sikuli? Sikuli是一款开源工具,用于基于图像识别的自动化测试。它可以识别屏幕上的图像,并模拟用户的交…...

【STM32实物】基于STM32设计的智能仓储管理系统(程序代码电路原理图实物图讲解视频设计文档等)——文末资料下载

基于STM32设计的智能仓储管理系统 演示视频: 基于STM32设计的智能仓储管理系统 摘要 近年来,随着我国仓储发展的和药品需求的不断增多,许多医院都采用药物仓储管理系统。我国的药物仓储产业已经有了长足的发展,仓库的规模不断变大,对仓储的要求也不断增高,药物的存储,…...

libtool 中的 .la 文件说明

libtool 中的 .la 文件说明 1 概述 在 Linux 系统中&#xff0c;libtool 是一个用于自动化编译和链接复杂软件项目的工具&#xff0c;特别是那些使用了共享库&#xff08;.so 文件在 Linux 上&#xff0c;.dylib 在 macOS 上&#xff09;的项目。它帮助处理各种编译器和链接器…...

NLP-transformer学习:(6)dataset 加载与调用

NLP-transformer学习&#xff1a;&#xff08;6&#xff09;dataset 加载与调用 平常其实也经常进行trainning等等&#xff0c;但是觉得还是觉得要补补基础&#xff0c;所以静下心&#xff0c;搞搞基础联系 本章节基于 NLP-transformer学习&#xff1a;&#xff08;5&#xff0…...

数据库系统 第43节 数据库复制

数据库复制是一种重要的技术&#xff0c;用于在多个数据库系统之间同步数据。这在分布式系统中尤其重要&#xff0c;因为它可以提高数据的可用性、可扩展性和容错性。以下是几种常见的数据库复制类型&#xff1a; 主从复制 (Master-Slave Replication): 在这种模式下&#xff0…...

LabVIEW FIFO详解

在LabVIEW的FPGA开发中&#xff0c;FIFO&#xff08;先入先出队列&#xff09;是常用的数据传输机制。通过配置FIFO的属性&#xff0c;工程师可以在FPGA和主机之间&#xff0c;或不同FPGA VIs之间进行高效的数据传输。根据具体需求&#xff0c;FIFO有多种类型与实现方式&#x…...

如何验证VMWare WorkStation的安装?

如何验证VMWare WorkStation的安装&#xff1f; 右击"网络"&#xff0c;点击 打开"网络和Internet设置"&#xff0c;点击更改适配器选项&#xff0c;如果出现VMNet1和VMNet8&#xff0c;则说明安装成功。...

论文阅读:AutoDIR Automatic All-in-One Image Restoration with Latent Diffusion

论文阅读&#xff1a;AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion 这是 ECCV 2024 的一篇文章&#xff0c;利用扩散模型实现图像恢复的任务。 Abstract 这篇文章提出了一个创新的 all-in-one 的图像恢复框架&#xff0c;融合了隐扩散技术&#x…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...