基于Python的自然语言处理系列(2):Word2Vec(负采样)
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(Negative Sampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。
1. Word2Vec(负采样)原理
1.1 负采样的背景
在Word2Vec的Skip-gram模型中,我们的目标是通过给定的中心词预测其上下文词。然而,当词汇表非常大时,计算所有词的预测概率会变得非常耗时。为了解决这个问题,负采样技术被引入。
1.2 负采样的工作原理
负采样通过从词汇表中随机选择一些词作为负样本来简化训练过程。具体来说,除了正样本(即真实的上下文词),我们还为每个正样本选择若干个负样本。模型的目标是最大化正样本的预测概率,同时最小化负样本的预测概率。这样,训练过程只需要考虑部分词汇,从而减少了计算量。
2. Word2Vec(负采样)实现
我们将通过以下步骤来实现带有负采样的Word2Vec模型:
2.1 定义简单数据集
首先,我们定义一个简单的语料库来演示负采样的应用。
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F# 定义语料库
corpus = ["apple banana fruit", "banana apple fruit", "banana fruit apple","dog cat animal", "cat animal dog", "cat dog animal"]corpus = [sent.split(" ") for sent in corpus]
print(corpus)
2.2 数据预处理
获取词序列和唯一词汇,并进行数值化处理。
# 获取词汇表
flatten = lambda l: [item for sublist in l for item in sublist]
vocab = list(set(flatten(corpus)))
print(vocab)# 数值化
word2index = {w: i for i, w in enumerate(vocab)}
print(word2index)# 词汇表大小
voc_size = len(vocab)
print(voc_size)# 添加UNK标记
vocab.append('<UNK>')
word2index['<UNK>'] = 0
index2word = {v: k for k, v in word2index.items()}
2.3 准备训练数据
定义一个函数用于生成Skip-gram模型的训练数据。
def random_batch(batch_size, word_sequence):skip_grams = []for sequence in word_sequence:for i, word in enumerate(sequence):context = [sequence[j] for j in range(max(0, i - 1), min(len(sequence), i + 2)) if j != i]for ctx_word in context:skip_grams.append((word, ctx_word))return skip_grams
2.4 负采样
实现负采样的训练过程。
class Word2Vec(nn.Module):def __init__(self, vocab_size, embedding_dim):super(Word2Vec, self).__init__()self.in_embed = nn.Embedding(vocab_size, embedding_dim)self.out_embed = nn.Embedding(vocab_size, embedding_dim)self.in_embed.weight.data.uniform_(-1, 1)self.out_embed.weight.data.uniform_(-1, 1)def forward(self, center_word, context_word):in_embeds = self.in_embed(center_word)out_embeds = self.out_embed(context_word)scores = torch.matmul(in_embeds, out_embeds.t())return scores# Initialize model
embedding_dim = 10
model = Word2Vec(voc_size, embedding_dim)
optimizer = optim.SGD(model.parameters(), lr=0.01)
2.5 训练模型
进行模型训练,并应用负采样技术来优化模型。
def train_word2vec(model, skip_grams, epochs=10):for epoch in range(epochs):total_loss = 0for center, context in skip_grams:center_idx = torch.tensor([word2index[center]], dtype=torch.long)context_idx = torch.tensor([word2index[context]], dtype=torch.long)optimizer.zero_grad()scores = model(center_idx, context_idx)target = torch.tensor([1], dtype=torch.float32)loss = F.binary_cross_entropy_with_logits(scores.squeeze(), target)loss.backward()optimizer.step()total_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {total_loss}')# Prepare skip-gram pairs
skip_grams = random_batch(10, corpus)
train_word2vec(model, skip_grams)
结语
在本篇文章中,我们详细探讨了Word2Vec模型中的负采样技术,并通过代码实现展示了如何在Python中应用这一技术来优化Skip-gram模型。负采样通过减少计算量,提高了模型的训练效率,使得在大规模数据集上的训练变得可行。
在下一篇文章中,我们将继续探讨另一种词向量表示方法——GloVe(Global Vectors for Word Representation)。敬请期待!
如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!
欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。
谢谢大家的支持!
相关文章:
基于Python的自然语言处理系列(2):Word2Vec(负采样)
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(Negative Sampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将…...

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟
每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五…...

大数据之Flink(六)
17、Flink CEP 17.1、概念 17.1.1、CEP CEP是“复杂事件处理(Complex Event Processing)”的缩写;而 Flink CEP,就是 Flink 实现的一个用于复杂事件处理的库(library)。 总结起来,复杂事件处…...

设计模式学习[5]---装饰模式
文章目录 前言1. 原理阐述2. 举例2.1 人装饰方案一2.2 人装饰方案二2.3 人装饰方案三 总结 前言 近期在给一个已有的功能拓展新功能时,基于原有的设计类图进行讨论。其中涉及到了装饰模式,因为书本很早已经看过一遍,所以谈及到这个名词的时候…...

3.C_数据结构_栈
概述 什么是栈: 栈又称堆栈,是限定在一段进行插入和删除操作的线性表。具有后进先出(LIFO)的特点。 相关名词: 栈顶:允许操作的一端栈底:不允许操作的一端空栈:没有元素的栈 栈的作用: 可…...
Debian11安装DolphinScheduler
安装地址 前置准备工作 JDK安装 下载JDK (1.8),安装并配置 JAVA_HOME 环境变量,并将其下的 bin 目录追加到 PATH 环境变量中。如果你的环境中已存在,可以跳过这步 二进制包安装DolphinScheduler 依赖 apt-get install psmisc 二进制安…...

C语言深度剖析--不定期更新的第五弹
const关键字 来看一段代码: #include <stdio.h> int main() {int a 10;a 20;printf("%d\n", a);return 0; }运行结果如下: 接下来我们在上面的代码做小小的修改: #include <stdio.h> int main() {const int a 1…...
python之事务
事务(Transaction)是数据库管理系统(DBMS)中的一个重要概念,用于确保一组数据库操作要么全部成功,要么全部失败,从而保证数据的一致性和完整性。 事务ACID 特性 事务具有以下四个特性…...

文件加密软件都有哪些?推荐6款文件加密工具
不久前,一家知名科技公司的内部文件在未经授权的情况下被泄露到了网络上,其中包括了公司的核心技术蓝图、客户名单及未来战略规划。这一事件不仅给公司带来了巨大的经济损失,还严重损害了企业的声誉。 如何防止以上事件的发生呢,文…...

Docker中的容器内部无法使用vi命令怎么办?
不知道你是否遇到过,在修改容器内部的配置的时候,有时候会提示vi命令不可用。尝试去安装vi插件,好像也不是很容易,有什么办法可以帮助我们修改这个配置文件呢? 解决办法 这时候,我们就需要用到docker cp 命令了,它可以帮助我们把容器内部的文件复制到宿主机上,也可以将…...

【Linux系统编程】TCP实现--socket
使用套接字socket实现服务器和客户端之间的TCP通信。 流程如下: 实现代码: /* server.c */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <arpa/inet.h> #include <s…...

企业微信hook协议接口,聚合群聊客户管理工具开发
服务提供了丰富的API和SDK,可以在企微的功能之上进行应用开发和功能扩展 自建应用可以调用企微hook或协议提供的接口来实现数据交互,可以直接调用hook或协议接口提供的功能来进行消息的发送与接收、用户管理、应用管理等操作,通过接口可以实…...
Selenium集成Sikuli基于图像识别的自动化测试
看起来您提供了一个链接,但目前我并没有从该链接获取到具体的信息内容。不过,如果您希望了解如何将Sikuli集成到Selenium中,我可以为您提供一些基本的指南。 什么是Sikuli? Sikuli是一款开源工具,用于基于图像识别的自动化测试。它可以识别屏幕上的图像,并模拟用户的交…...
【STM32实物】基于STM32设计的智能仓储管理系统(程序代码电路原理图实物图讲解视频设计文档等)——文末资料下载
基于STM32设计的智能仓储管理系统 演示视频: 基于STM32设计的智能仓储管理系统 摘要 近年来,随着我国仓储发展的和药品需求的不断增多,许多医院都采用药物仓储管理系统。我国的药物仓储产业已经有了长足的发展,仓库的规模不断变大,对仓储的要求也不断增高,药物的存储,…...

libtool 中的 .la 文件说明
libtool 中的 .la 文件说明 1 概述 在 Linux 系统中,libtool 是一个用于自动化编译和链接复杂软件项目的工具,特别是那些使用了共享库(.so 文件在 Linux 上,.dylib 在 macOS 上)的项目。它帮助处理各种编译器和链接器…...

NLP-transformer学习:(6)dataset 加载与调用
NLP-transformer学习:(6)dataset 加载与调用 平常其实也经常进行trainning等等,但是觉得还是觉得要补补基础,所以静下心,搞搞基础联系 本章节基于 NLP-transformer学习:(5࿰…...
数据库系统 第43节 数据库复制
数据库复制是一种重要的技术,用于在多个数据库系统之间同步数据。这在分布式系统中尤其重要,因为它可以提高数据的可用性、可扩展性和容错性。以下是几种常见的数据库复制类型: 主从复制 (Master-Slave Replication): 在这种模式下࿰…...

LabVIEW FIFO详解
在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式&#x…...

如何验证VMWare WorkStation的安装?
如何验证VMWare WorkStation的安装? 右击"网络",点击 打开"网络和Internet设置",点击更改适配器选项,如果出现VMNet1和VMNet8,则说明安装成功。...

论文阅读:AutoDIR Automatic All-in-One Image Restoration with Latent Diffusion
论文阅读:AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion 这是 ECCV 2024 的一篇文章,利用扩散模型实现图像恢复的任务。 Abstract 这篇文章提出了一个创新的 all-in-one 的图像恢复框架,融合了隐扩散技术&#x…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...