大语言模型LLM权重4bit向量量化(Vector Quantization)/查找表量化基本原理
参考
https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html
https://apple.github.io/coremltools/docs-guides/source/opt-palettization-algos.html
Apple Intelligence Foundation Language Models
苹果向量量化:
DKM: Differentiable K-Means Clustering Layer for Neural Network Compression
eDKM: An Efficient and Accurate Train-time Weight Clustering for Large Language Models
高通向量量化:
GPTVQ: The Blessing of Dimensionality for LLM Quantization
向量量化基础
针对大语言模型权重的4bit量化,除了常规的广泛使用的group-wise均匀量化,如GPTQ, AWQ等等,苹果提出了一种称为Palettization的lookup table (LUT)查找表量化技术,高通也提出了新的一种向量量化技术,其实这两种技术原理基本上大体是相同的。
首先,均匀量化就不多说了,基于一个仿射变换来映射量化后的整数值和非量化的浮点数值,一般采用r=(q-z)*s,可以参考深度学习模型量化基础_深度学习 量化-CSDN博客
常规的查找表量化则是一种非均匀量化,比如同样的4bit量化为0-15的整数,查找表LUT可以建立这0-15的每个整数到他们分别对应的一个浮点数的对应关系。这个对应关系可以是任意采样方式的,因此为非均匀量化。
Vector Quantization (VQ)向量量化,其实第一性原理也挺简单的:相对于上面所描述的标量量化把一个标量的浮点映射到其对应的一个整数。而向量量化则是要把一个浮点的d维向量映射为一个n bit的标量整数。具体实现通常采用聚类算法,在d维空间中进行聚类为k=2^n个类别,每个聚类中心采用一个整数表示,从而建立一个整数到聚类中心d维向量的查找表。量化阶段根据输入的d维向量到每个聚类中心的距离分配其对应的量化值,而反量化则根据每个量化后的整数,根据查找表恢复聚类中心的d维向量,这显然是一个非均匀有损量化。具体细节如何获得每个聚类中心则是另一个核心技术点。
Product quantization:把一个大D维的向量均匀split为多个更短的d维向量,每个d维向量采用VQ量化。Vector Quantization和Product quantization本身是从其他领域引入到大语言模型量化,麻烦读者查询相关的资料进行进一步了解。
高通GPTVQ的Vector Quantization量化LLM权重
假设每2个元素一起作为一个向量,每个元素4bit,那么2个元素一起量化就有4x2=8bit的budget,那么LUT查找表大小将为2^8=256大小。而维度更高,LUT粒度更小。但是LUT大小将剧烈增长:
we use bits per dimension (b) to indicate the number of index bits stored for each individual weight. This means that, for VQ with dimension d, the total number of index bits is d × b, and the number of centroids in a codebook is k = 2^(d×b).
可以看到高通的这个方法基本上只能用于2维向量量化,更高维度意味着急剧增长的查找表大小。
苹果的方法

Palettization, also referred to as weight clustering, compresses a model by clustering the model’s float weights, and creating a lookup table (LUT) of centroids, and then storing the original weight values with indices pointing to the entries in the LUT.
Weights with similar values are grouped together and represented using the value of the cluster centroid they belong to, as shown in the following figure. The original weight matrix is converted to an index table in which each element points to the corresponding cluster center.
N={1,2,3,4,6,8} are supported, where N is the number of bits used for palettization.


相关文章:
大语言模型LLM权重4bit向量量化(Vector Quantization)/查找表量化基本原理
参考 https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html https://apple.github.io/coremltools/docs-guides/source/opt-palettization-algos.html Apple Intelligence Foundation Language Models 苹果向量量化: DKM:…...
学习threejs,创建立方体,并执行旋转动画
文章目录 一、前言二、代码示例三、总结 一、前言 本文基于threejs,实现立方体的创建,并加入立方体旋转动画 二、代码示例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>l…...
2024网安周今日开幕,亚信安全亮相30城
2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席20…...
Unity Qframework 加载UI的方式
如图所示 : // Resources 加载 UIKit.OpenPanel("Resources/UIPrefab/UIMenuPanel"); // Resources 加载并传递数据 UIKit.OpenPanel<UIMenuPanel>(new UIMenuPanelData() { m_Modle this.m_Modle }, prefabName: "UIPrefab/UIMenuPanel"); …...
使用 Python 创建自动抽奖程序
介绍 自动抽奖程序在各种场景中非常有用,比如社交媒体活动、公司抽奖、在线课程奖励等。在这篇博文中,我们将学习如何使用 Python 创建一个自动抽奖程序。我们将涵盖以下内容: 需求分析环境设置基本抽奖逻辑图形用户界面(GUI&am…...
推荐10款功能强大的电脑监控软
随着工作环境和信息安全要求的不断提高,越来越多的企业和个人开始关注电脑监控软件。电脑监控软件能够帮助管理者监控员工工作效率、保护敏感信息、防止数据泄露等。下面,我们将为大家推荐10款功能强大的电脑监控软件,涵盖国内外的知名产品&a…...
‘“node“‘ �����ڲ����ⲿ���Ҳ���ǿ����еij��� ���������ļ���
错误信息 使用vscode提交前端代码到git时,报下面的错,一直不知道啥原因,后来找到了个临时解决方案。。。 vscode解决方案 package.json文件中,去掉hooks的配置。 Idea解决方案 网上有说idea的解决方案的:就是提…...
MQ-135空气质量传感器(STM32)
目录 一、介绍 二、传感器原理 1.原理图 2.引脚描述 3.工作原理介绍 三、程序设计 main.c文件 mq135.h文件 mq135.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 MQ-135空气质量传感器属于MQ系列气体传感器,广泛用于检测有害气体、新鲜空气中的烟…...
动手学深度学习(pytorch)学习记录27-深度卷积神经网络(AlexNet)[学习记录]
目录 创建模型读取数据集训练AlexNet AlexNet 是由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 在 2012 年提出的深度卷积神经网络,它在当年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中取得了显著的成绩,从而引起了深度…...
zookeeper是啥?在kafka中有什么作用
一、Zookeeper是啥 问AI,它是这么说: ZooKeeper是一个开源的分布式协调服务。 ZooKeeper最初由雅虎研究院开发,用于解决大型分布式系统中的协调问题,特别是为了避免分布式单点故障。它被设计成一个简单易用的接口集,封…...
华为手机集大成之作?带你看全球首款三折叠手机 Mate XT 非凡大师
北京时间9月10日14:30分,华为终端在深圳召开了华为见证非凡品牌盛典及鸿蒙智行新品发布会。这次发布会最受瞩目的莫过于非凡大师系列的新品、全球首款三折叠手机Mate XT 非凡大师。 三折叠形态,内外铰链存于一体 尽管三折叠的概念被提出来的时间并不算…...
构建安全畅通的道路网络:EasyCVR视频汇聚平台在道路监控中的创新应用
随着城市化进程的加速和交通流量的不断增加,道路监控已成为确保交通安全、维护社会秩序的重要手段。道路上的监控摄像头多种多样,大致可以分为这几类:交通道路监控、治安监控、路口违章监控,以及车辆测速监控等。基于智慧交通的需…...
Mac M1安装Hive
一、下载解压Hive 1.官网地址 https://dlcdn.apache.org/hive/ 2.选择对应版本进行下载,这里我以3.1.3为例; 3.下载好后,进行解压,并重命名为hive-3.1.3,放到资源库目录下; 二、配置系统环境 1.打开~/…...
shader 案例学习笔记之绘制圆
环境搭建:参考glsl vscode环境搭建 先上代码 #ifdef GL_ES precision mediump float; #endifuniform vec2 u_resolution;void main(){vec2 st gl_FragCoord.xy/u_resolution.xy;st - 0.5;st.x * u_resolution.x/u_resolution.y;float r length(st);float d ste…...
c++的模板编程技术及其发展历程
C模板编程技术及其发展历程 一、早期阶段(C98及之前) 在C98标准中,模板是首次被引入的关键特性之一。模板允许开发人员编写参数化的类型或函数,从而创建通用的算法和数据结构。这种通用性不仅提高了代码的复用性,还确…...
Unity 一个比较适合学习的FSM状态机(汉化和功能简述)
该轮子由网络资源而来,遵从作者开源意愿,仅作免费学习和分享,不作任何商业行为 ,本文不支持任何交易行为,侵权删!!! 至于我为什么不将此文章设置为转载,是因为该代码所在…...
25、Wpf之App资源应用
开发平台:Win10 64位 开发环境:VS2022(64位) Preview .NET Framework:.NET 6 文章目录 一 Resources1.1 Application中定义资源1.2 样式(Styles)1.3 模板(Templates)1.4 数据转换器(…...
【深度好文】反模式:10种滥用设计模式案例分析
Hello,大家好,我是V哥。很多文章都在介绍设计模式怎么用,讲解设计模式的原理等等,设计模式的思想是编程中的精髓,用好了可以让代码结构利于维护和扩展,同时代码风格也更加优雅,V 哥也写过这样一…...
OkHttp Interceptor日志上报
最近为了做一些网络上的优化,所以就得提前埋点,为后续网络优化提供数据支持。 主要是对发起请求埋点,请求错误埋点,客户端请求耗时埋点。 事件上报到阿里云,接入的是阿里的应用实时监控服务。 网络请求使用的是OhHttp…...
高性能反向代理--HAProxy
文章目录 Web架构负载均衡介绍为什么使用负载均衡负载均衡类型 HAProxy简介应用场景HAProxy是什么HAProxy功能 脚本安装HAProxy基础配置global多进程和线程HAProxy日志配置项 Proxies配置-listen-frontend-backendserver配置 frontendbackend配置实例子配置文件 HAProxy调度算法…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
