当前位置: 首页 > news >正文

一般位置下的3D齐次旋转矩阵

下面的矩阵虽然复杂,但它的逆矩阵求起来非常简单,只需要在 sin ⁡ θ \sin\theta sinθ 前面加个负号就是原来矩阵的逆矩阵。

如果编程序是可以直接拿来用的,相比其它获取一般旋转轴不经过原点的三维旋转矩阵的途径或算法,应该能够一定程度降低计算或编程复杂度。如果是引用,这个叫 LC三维旋转矩阵公式(L和C是两作者的姓的首字母联合)。

得到这个结果没有什么取巧之处,纯粹就是堆计算量、靠眼力和数学公式化简的经验。本来以为只是再现了另一种罗德里格斯公式,但实际上并不是。

R ( x 0 , y 0 , z 0 , a , b , c , θ ) = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2 − cos ⁡ θ ] + ( sin ⁡ θ [ 0 − c b 0 c 0 − a 0 − b a 0 0 0 0 0 0 ] a 2 + b 2 + c 2 \displaystyle R\left(x_0,y_0,z_0,a,b,c,\theta\right)=\left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2-\cos \theta \\ \end{array} \right]+\left(\frac{\sin \theta \left[ \begin{array}{rrrr} 0 & -c & b & 0 \\ c & 0 & -a & 0 \\ -b & a & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right]}{\sqrt{a^2+b^2+c^2}} \right. R(x0,y0,z0,a,b,c,θ)= 1000010000100002cosθ + a2+b2+c2 sinθ 0cb0c0a0ba000000

− ( 1 − cos ⁡ θ ) ( [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] − [ a b c 0 ] . [ a b c 0 ] a 2 + b 2 + c 2 ) ) . [ 1 0 0 − x 0 0 1 0 − y 0 0 0 1 − z 0 0 0 0 1 ] \displaystyle {\left.-(1-\cos \theta) \left(\left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right]-\frac{\left[ \begin{array}{c} a \\ b \\ c \\ 0 \\ \end{array} \right].\left[ \begin{array}{cccc} a & b & c & 0 \\ \end{array} \right]}{a^2+b^2+c^2}\right)\right).\left[ \begin{array}{rrrr} 1 & 0 & 0 & -{x_0} \\ 0 & 1 & 0 & -{y_0} \\ 0 & 0 & 1 & -{z_0} \\ 0 & 0 & 0 & 1 \\ \end{array} \right]} (1cosθ) 1000010000100001 a2+b2+c2 abc0 .[abc0] . 100001000010x0y0z01

在这里插入图片描述

相关文章:

一般位置下的3D齐次旋转矩阵

下面的矩阵虽然复杂,但它的逆矩阵求起来非常简单,只需要在 sin ⁡ θ \sin\theta sinθ 前面加个负号就是原来矩阵的逆矩阵。 如果编程序是可以直接拿来用的,相比其它获取一般旋转轴不经过原点的三维旋转矩阵的途径或算法,应该能…...

每日一题——第八十六题

题目&#xff1a;写一个函数&#xff0c;输入一个十进制的数&#xff0c;将其转换为任意的r进制数 #include<stdio.h> void convertToBaseR(int num, int r); int main() {int num, r;printf("请输入十进制的整数&#xff1a;");scanf_s("%d", &…...

十、组合模式

组合模式&#xff08;Composite Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许将对象组合成树形结构来表示“部分-整体”的层次关系。组合模式能够让客户端以统一的方式对待单个对象和对象集合&#xff0c;使得客户端在处理复杂树形结构的时候&#xff0c;可以以…...

一分钟了解网络安全风险评估!

网络安全风险评估是一种系统性的分析过程&#xff0c;旨在识别和评估网络系统中的潜在安全风险。这个过程包括识别网络资产、分析可能的威胁和脆弱性、评估风险的可能性和影响&#xff0c;以及提出缓解措施。网络安全风险评估有助于组织了解其网络安全状况&#xff0c;制定相应…...

【springsecurity】使用PasswordEncoder加密用户密码

目录 1. 导入依赖2. 配置 PasswordEncoder3. 使用 PasswordEncoder 加密用户密码4. 使用 PasswordEncoder 验证用户密码 1. 导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifac…...

从0到1实现线程池(C语言版)

目录 &#x1f324;️1. 基础知识 ⛅1.1 线程概述 ⛅1.2 linux下线程相关函数 &#x1f325;️1.2.1 线程ID &#x1f325;️1.2.2 线程创建 &#x1f325;️1.2.3 线程回收 &#x1f325;️1.2.4 线程分离 &#x1f324;️2. 线程池概述 ⛅2.1 线程池的定义 ⛅2.2 为…...

Visual studio自动添加头部注释

记事本打开VS版本安装目录下的Class.cs文件 增加如下内容&#xff1a;...

【C#生态园】提升性能效率:C#异步I/O库详尽比较和应用指南

优化异步任务处理&#xff1a;C#异步I/O库全面解析 前言 在C#开发中&#xff0c;异步I/O是一个重要的主题。为了提高性能和响应速度&#xff0c;开发人员需要深入了解各种异步I/O库的功能和用法。本文将介绍几个常用的C#异步I/O库&#xff0c;包括Task Parallel Library、Asy…...

管理医疗AI炒作的三种方法

一个人类医生和机器人医生互相伸手。 全美的医院、临床诊所和医疗系统正面临重重困难。他们的员工队伍紧张且人员短缺&#xff0c;运营成本不断上升&#xff0c;服务需求常常超过其承受能力&#xff0c;限制了医疗服务的可及性。 人工智能应运而生。在自ChatGPT推出将AI推向聚…...

VMware Workstation Pro Download 个人免费使用

参考 VMware Workstation Pro Download...

DevOps平台搭建过程详解--Gitlab+Jenkins+Docker+Harbor+K8s集群搭建CICD平台

一、环境说明 1.1CI/CD CI即为持续集成(Continue Integration,简称CI)&#xff0c;用通俗的话讲&#xff0c;就是持续的整合版本库代码编译后制作应用镜像。建立有效的持续集成环境可以减少开发过程中一些不必要的问题、提高代码质量、快速迭代等;(Jenkins) CD即持续交付Con…...

Nginx之日志切割,正反代理,HTTPS配置

1 nginx日志切割 1.1 日志配置 在./configure --prefixpath指定的path中切换进去&#xff0c;找到log文件夹&#xff0c;进去后找到都是对应的日志文件 其中的nginx.pid是当前nginx的进程号&#xff0c;当使用ps -ef | grep nginx获得就是这个nginx.pid的值 在nginx.conf中…...

Mysql数据量大,如何拆分Mysql数据库(垂直拆分)

垂直拆分&#xff08;Vertical Partitioning&#xff09;是一种将数据库按照业务模块或功能进行拆分的方法&#xff0c;目的是将不同模块的数据放到不同的数据库中&#xff0c;从而减少单个数据库的压力&#xff0c;提高系统的性能和可扩展性。垂直拆分适用于数据量大且业务模块…...

机器人可能会在月球上提供帮助

登月是我们这个时代最具标志性的事件之一&#xff0c;这可能还算轻描淡写了&#xff1a;这是我们迄今为止在物理上探索得最远的一次。我听过一些当时的老广播&#xff0c;它们可以让你想象出这次航行的重要性。 现在&#xff0c;研究人员表示&#xff0c;我们可能很快就能重返…...

真实案例分享:零售企业如何避免销售数据的无效分析?

在零售业务的数据分析中&#xff0c;无效分析不仅浪费时间和资源&#xff0c;还可能导致错误的决策。为了避免这种情况&#xff0c;企业必须采取策略来确保他们的数据分析工作能够产生实际的商业价值。本文将通过行业内真实的案例&#xff0c;探讨零售企业如何通过精心设计的数…...

ctfshow-文件包含

web78 <?phpif(isset($_GET[file])){$file $_GET[file];include($file); }else{highlight_file(__FILE__); } 判断是否存在file参数 如果存在 将包含这个参数值 文件 php://filter可以获取指定文件源码。当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执…...

Qt事件处理机制

用qt实现简单闹钟 widget.h #ifndef WIDGET_H #define WIDGET_H #include<QPushButton> #include<QTextEdit> #include<QLabel> #include <QWidget> #include<QMouseEvent> #include<QPoint> #include<QTime> #include<QTimer&…...

vue axios 如何读取项目下的json文件

在 Vue 项目中&#xff0c;使用 axios 读取本地的 JSON 文件可以通过将 JSON 文件放置在 public 目录中&#xff0c;然后通过 axios 发起请求读取。 步骤&#xff1a; 将 JSON 文件放置在 public 目录下&#xff1a; Vue 项目中的 public 目录是静态资源目录&#xff0c;项目编…...

燃气涡轮发动机性能仿真程序GSP12.0.4.2使用经验(二):使用GSP建立PG9351FA燃气轮机性能仿真模型

目录 一、PG9351FA燃气轮机简介及热力循环参数二、基于GSP的性能仿真模型设置环境参数设置进气道参数设置压气机参数设置燃烧室参数设置透平&#xff08;涡轮&#xff09;参数设置转子负载参数燃油流量外部控制 三、仿真结果四、其它 一、PG9351FA燃气轮机简介及热力循环参数 …...

迟滞比较器/施密特触发器

功能 从下面原理图像看来&#xff0c;只有在达到上下阈值才会出现输出电平的转换&#xff0c;这样防止信号的杂波跳变。而且每次的阈值是随着输出而变化的&#xff0c;当输出高时&#xff0c;阈值如下图中&#xff0c;V_PV_N V_R*( RF/(R1RF) )VH*( R1/(R1RF) );当输出低时&a…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...