当前位置: 首页 > news >正文

经验笔记:SQL调优

SQL调优经验笔记

引言

SQL调优是确保数据库系统高效运行的重要环节。通过对查询语句、数据库配置、硬件资源等方面进行优化,可以显著提升数据库性能,进而增强应用程序的整体表现。以下是基于常见调优手段和实践经验整理的一份经验笔记。

1. 查询语句优化
  • 1.1 避免使用SELECT *
    只选择需要的列,减少不必要的数据传输。
    示例:
-- 不推荐
SELECT * FROM users WHERE id = 1;-- 推荐
SELECT first_name, last_name, email FROM users WHERE id = 1;
  • 1.2 用UNION ALL代替UNION
    UNION ALL不进行去重操作,执行速度更快。
    示例:
-- 不推荐
(SELECT first_name, last_name FROM users WHERE city = 'New York')
UNION
(SELECT first_name, last_name FROM users WHERE city = 'Los Angeles');-- 推荐
(SELECT first_name, last_name FROM users WHERE city = 'New York')
UNION ALL
(SELECT first_name, last_name FROM users WHERE city = 'Los Angeles');
  • 1.3 小表驱动大表

    描述:在连接查询中,如果有一个小表和一个大表,应该优先使用小表来驱动大表,以减少处理的数据量。

    不推荐

    SELECT * FROM orders o JOIN users u ON o.user_id = u.id WHERE u.status = 'active';
    

    这个查询会先从orders表开始,然后对于每一个orders表中的记录,都会去users表中查找匹配的记录。如果orders表很大,而符合条件的users很少,那么这种查询效率不高。

    推荐

    SELECT * FROM orders o WHERE o.user_id IN (SELECT id FROM users WHERE status = 'active');
    

    这个查询先从users表中找出所有状态为active的用户ID,然后从orders表中选择那些用户ID包含在这些活跃用户ID中的订单记录。这种方式减少了处理orders表的数据量。

  • 1.4 批量操作
    批量插入或更新数据,减少请求次数,提高性能。
    示例:

    -- 不推荐
    INSERT INTO orders (order_id, product_id, quantity) VALUES (1, 1, 10);
    INSERT INTO orders (order_id, product_id, quantity) VALUES (2, 2, 20);
    INSERT INTO orders (order_id, product_id, quantity) VALUES (3, 3, 30);-- 推荐
    INSERT INTO orders (order_id, product_id, quantity) VALUES (1, 1, 10), (2, 2, 20), (3, 3, 30);
    
  • 1.5 多用LIMIT
    限制查询结果的数量,提高查询效率。
    示例:

    -- 不推荐
    SELECT * FROM orders ORDER BY order_date DESC;-- 推荐
    SELECT * FROM orders ORDER BY order_date DESC LIMIT 10;
    
  • 1.6 限制IN子句中的值
    避免查询大量数据导致接口超时。
    示例:

    -- 不推荐
    SELECT * FROM categories WHERE id IN (1, 2, 3, ..., 10000);-- 推荐
    SELECT * FROM categories WHERE id IN (1, 2, 3, ..., 100) LIMIT 500;
    
  • 1.7 增量查询
    通过条件限制,每次只查询部分数据,提高同步效率。
    示例:

    -- 不推荐
    SELECT * FROM users WHERE create_time > '2024-01-01';-- 推荐
    SELECT * FROM users WHERE id > #{lastId} AND create_time >= #{lastCreateTime} LIMIT 100;
    
  • 1.8 高效的分页
    使用ID范围查询代替偏移量分页。
    示例:

    -- 不推荐
    SELECT * FROM users LIMIT 1000, 20;-- 推荐
    SELECT * FROM users WHERE id > 1000000 LIMIT 20;
    
  • 1.9 用连接查询代替子查询

    描述:使用连接查询而不是子查询,以减少临时表的创建,提高查询效率。

    不推荐

    SELECT * FROM orders WHERE user_id = (SELECT id FROM users WHERE status = 'active');
    

    这里假设只有一个用户的statusactive。如果有多条记录符合条件,那么子查询将返回多行结果,可能导致内部错误或低效的处理。

    推荐

    SELECT o.* FROM orders o INNER JOIN users u ON o.user_id = u.id WHERE u.status = 'active';
    

    这个查询通过连接两个表直接获取结果,减少了因子查询导致的临时表创建。

  • 1.10 JOIN的表不宜过多
    控制JOIN表的数量,避免复杂的索引选择。
    示例:

    -- 不推荐
    SELECT a.name, b.name, c.name FROM a INNER JOIN b ON a.id = b.a_id INNER JOIN c ON c.b_id = b.id;-- 推荐
    SELECT a.name, b.name FROM a INNER JOIN b ON a.id = b.a_id;
    
  • 1.11 JOIN时注意小表驱动大表

    描述:使用INNER JOIN时,应让小表驱动大表;使用LEFT JOIN时,左边应为小表。

    不推荐

    SELECT o.id, o.code, u.name FROM orders o LEFT JOIN users u ON o.user_id = u.id WHERE u.status = 'active';
    

    这个查询使用了LEFT JOIN,意味着orders表中的每一行都会被处理,即使users表中没有匹配的记录。如果orders表很大,而users表中符合条件的记录很少,这会导致很多空值的行。

    推荐

    SELECT o.id, o.code, u.name FROM orders o INNER JOIN users u ON o.user_id = u.id WHERE u.status = 'active';
    

    这个查询只返回orders表中那些其user_id在符合条件的users表中的记录,这样可以减少处理的数据量。

  • 1.12 控制索引的数量
    合理控制索引数量,避免过多的索引导致性能消耗。
    示例:

    -- 不推荐
    CREATE INDEX idx_user_id ON orders (user_id);
    CREATE INDEX idx_order_date ON orders (order_date);
    CREATE INDEX idx_product_id ON orders (product_id);-- 推荐
    CREATE INDEX idx_user_id_order_date ON orders (user_id, order_date);
    
  • 1.13 选择合理的字段类型
    根据数据特点选择合适的字段类型。
    示例:

    -- 不推荐
    ALTER TABLE orders ADD COLUMN order_code VARCHAR(20) NOT NULL;-- 推荐
    ALTER TABLE orders ADD COLUMN order_code CHAR(10) NOT NULL;
    
  • 1.14 提升GROUP BY的效率
    GROUP BY前使用WHERE条件过滤数据。
    示例:

    -- 不推荐
    SELECT user_id, COUNT(*) FROM orders GROUP BY user_id;-- 推荐
    SELECT user_id, COUNT(*) FROM orders WHERE user_id <= 200 GROUP BY user_id;
    
  • 1.15索引优化

    描述:使用EXPLAIN命令来检查SQL查询是否有效地利用了索引。

    不推荐

    SELECT * FROM orders WHERE code = '002';
    

    如果code列上没有索引,那么数据库将执行全表扫描,这是低效的。

    推荐

    EXPLAIN SELECT * FROM orders WHERE code = '002';
    

    通过EXPLAIN命令,我们可以看到查询计划,并确认是否使用了索引。如果未使用索引,可能需要考虑添加适当的索引。

2. 数据库配置
  • 2.1 调整缓存大小
    根据系统可用内存调整数据库缓存大小,以提高数据访问速度。
    示例:

    -- MySQL示例
    SET GLOBAL innodb_buffer_pool_size = 1G;
    
  • 2.2 内存管理
    优化内存分配,确保足够的内存用于缓存经常访问的数据。
    示例:

    -- PostgreSQL示例
    ALTER SYSTEM SET shared_buffers = '128MB';
    
  • 2.3 事务隔离级别
    根据应用程序的需求调整事务隔离级别,以平衡并发性和一致性。
    示例:

    -- MySQL示例
    SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;
    
  • 2.4 日志和备份设置
    优化日志记录和备份策略,以减少对性能的影响。
    示例:

    -- MySQL示例
    SET GLOBAL log_bin_trust_function_creators = 1;
    
3. 硬件和基础设施
  • 3.1 扩展硬件资源
    增加更多的CPU核心、内存或更快的磁盘(如SSD)以提升性能。
    示例:

    • 升级服务器硬件
    • 使用固态硬盘(SSD)
  • 3.2 分布式架构
    采用分片(Sharding)、复制(Replication)等技术分散负载。
    示例:

    • 使用分片技术将数据分布在不同的物理服务器上
    • 设置主从复制,提高读写分离的能力
  • 3.3 负载均衡
    使用负载均衡器来分发请求,减轻单个服务器的压力。
    示例:

    • 配置Nginx或HAProxy作为负载均衡器
4. 应用程序层面
  • 4.1 缓存机制
    在应用程序层面上实现缓存机制,减少对数据库的直接访问。
    示例:

    • 使用Redis或Memcached作为缓存层
  • 4.2 异步处理
    对于耗时的操作,可以采用异步处理的方式,如队列或消息传递系统。
    示例:

    • 使用RabbitMQ或Kafka作为消息队列
  • 4.3 数据模型优化
    重新设计数据模型,减少冗余,提高数据的一致性和可维护性。
    示例:

    • 规范化数据表结构
    • 减少冗余字段
5. 持续监测
  • 5.1 性能监控
    使用性能监控工具持续监控数据库的运行状况,及时发现性能下降的情况。
    示例:

    • 使用Prometheus和Grafana进行性能监控
  • 5.2 日志分析
    定期分析数据库日志,查找可能导致性能问题的模式。
    示例:

    • 使用Logstash收集日志
    • 使用Elasticsearch进行日志分析
  • 5.3 定期审查
    定期审查SQL查询和数据库设计,寻找潜在的优化机会。
    示例:

    • 定期进行代码审查
    • 使用性能分析工具检查查询效率
6. 教育和培训
  • 6.1 团队技能提升
    确保开发团队有足够的知识来编写高效的SQL查询,并了解数据库的最佳实践。
    示例:

    • 组织内部培训课程
    • 分享最新的SQL调优技巧
  • 6.2 持续学习
    鼓励团队成员跟踪最新的数据库技术和优化策略。
    示例:

    • 参加技术会议
    • 阅读技术博客和论文
7. 实施步骤
  • 7.1 制定计划
    根据监测到的问题制定具体的优化计划。
    示例:

    • 列出需要优化的SQL查询
    • 确定需要调整的数据库配置
  • 7.2 小规模测试
    在不影响生产环境的情况下,先在一个小规模的环境中测试优化措施。
    示例:

    • 使用测试数据库进行实验
    • 收集测试结果
  • 7.3 逐步实施
    一旦验证了优化措施的有效性,逐步将其应用于生产环境。
    示例:

    • 先在非高峰时段部署
    • 监控效果
  • 7.4 效果评估
    实施后,再次进行性能测试,评估优化措施的效果,并根据需要继续调整。
    示例:

    • 使用性能监控工具
    • 定期复查性能
结论

SQL调优是一个持续的过程,需要不断地监测、分析和调整。通过以上提到的方法,可以有效提升数据库性能,确保应用程序能够平稳运行。在实践中,还需要根据具体的数据库系统、业务需求和技术环境进行灵活调整。

相关文章:

经验笔记:SQL调优

SQL调优经验笔记 引言 SQL调优是确保数据库系统高效运行的重要环节。通过对查询语句、数据库配置、硬件资源等方面进行优化&#xff0c;可以显著提升数据库性能&#xff0c;进而增强应用程序的整体表现。以下是基于常见调优手段和实践经验整理的一份经验笔记。 1. 查询语句优…...

Selenium使用浏览器用户配置进行测试

本文主要介绍了如何在使用Selenium WebDriver进行自动化测试时&#xff0c;创建和使用自定义的Firefox配置文件。 什么是Firefox配置文件&#xff1f; Firefox会将用户的个人信息&#xff0c;如书签、密码和用户偏好设置存储在一个称为配置文件的文件集合中&#xff0c;这些文…...

virsh命令的使用

virsh 是一个用于管理虚拟机的命令行工具&#xff0c;它与 libvirt 服务配合使用&#xff0c;支持对虚拟机的创建、配置、启动、停止等操作。 1、列出虚拟机 列出正在运行的虚拟机&#xff1a; virsh list列出所有虚拟机&#xff08;包括未启动的&#xff09;&#xff1a; …...

【来学Vue吧】创建一个Vue项目

&#x1f31f; 嗨&#xff0c;我是命运之光&#xff01; &#x1f30d; 2024&#xff0c;每日百字&#xff0c;记录时光&#xff0c;感谢有你一路同行。 &#x1f680; 携手启航&#xff0c;探索未知&#xff0c;激发潜能&#xff0c;每一步都意义非凡。 首先需要配置Vue环境…...

C#迭代器方法和yield用法

一.迭代器方法介绍 可使用foreach循环进行遍历的方法&#xff0c;称为迭代器方法。 迭代器方法使用yield return语句返回元素。 到达yield return语句时&#xff0c;会记住当前在代码中的位置。 下次调用迭代器函数时&#xff0c;将从该位置开始执行。换言之&#xff0c;如果…...

斗破C++编程入门系列之二十六:数组、指针和字符串:动态内存分配和释放(一星斗师)

斗破C目录&#xff1a; 斗破C编程入门系列之前言&#xff08;斗之气三段&#xff09; 斗破C编程入门系列之二&#xff1a;Qt的使用介绍&#xff08;斗之气三段&#xff09; 斗破C编程入门系列之三&#xff1a;数据结构&#xff08;斗之气三段&#xff09; 斗破C编程入门系列之…...

Servlet 和 Spring Boot 的请求处理流程区别和例子

当然可以为您绘制一个流程图&#xff0c;展示 Servlet 和 Spring Boot 的请求处理流程。这将帮助我们更直观地比较两者的工作方式。 #mermaid-svg-PgFEmecUmDhvxxtQ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-P…...

C++笔记之map的实用操作

C++笔记之map的实用操作 文章目录 C++笔记之map的实用操作1.初始化1.1.使用列表初始化1.2.使用 `insert` 方法1.3.使用 `emplace` 方法1.4.复制构造1.5.移动构造2.赋值2.1.列表赋值2.2.插入元素2.3.批量插入3.取值3.1.使用 `[]` 操作符3.2.使用 `at()` 方法3.3.检查键是否存在3…...

Lombok失效:报错 找不到符号 Springboot项目

错误原因&#xff0c;Springboot项目为Lombok提供了版本管理的支持&#xff0c;所以引入Lombok依赖的时候&#xff0c;无需手动指定版本&#xff0c;手动指定了可能会导致依赖冲突。 去掉手动指定的版本&#xff0c;问题解决...

Linux 基础命令-文件与目录操作

在 Linux 操作系统中&#xff0c;文件和目录是组织和管理数据的核心单元。作为一个命令行驱动的操作系统&#xff0c;Linux 提供了一系列强大且灵活的命令来操作文件和目录。掌握这些命令不仅是管理 Linux 系统的基础&#xff0c;也是高效使用 Linux 环境的关键。 一、文件与目…...

Delphi 12.1安卓APP开发中获取硬件信息及手机号

Demo与代码已上传到CSDN下载。 这里简单说一下代码内容&#xff0c;完整代码请自行下载&#xff0c;不清楚的欢迎留言交流。 前言 演示Demo使用了我自己开发的一个控件&#xff0c;TLayoutPro 《Delphi D10.3 LayoutsPro 控件简介 -避免输入焦点被虚拟键盘遮挡》请查看并下载控…...

STM32 - 笔记4

1 STM32 示波器 基于STM32的简易示波器项目(含代码)——HAL库_stm32简易示波器 基于STM32的简易示波器项目(含代码)——HAL库_stm32简易示波器_stm32示波器-CSDN博客 【强烈推荐】基于stm32的OLED各种显示实现(含动态图)_stm32oled以十六进制显示-CSDN博客 STM32示波器…...

【H2O2|全栈】更多关于HTML(1)HTML进阶(一)

目录 HTML进阶知识 前言 准备工作 标签的扩展&#xff08;一&#xff09; 本文中的标签在什么位置使用&#xff1f; title标签 meta标签 name viewport referrer http-equiv charset content link标签 实际案例 可视部分 代码分析 其他标签 base标签 styl…...

新160个crackme - 053-devilz KeyGen me#3

运行分析 解压出来4个文件运行程序发现要破解Name和Serial PE分析 32位&#xff0c;petite壳 手动脱壳 使用windows XP虚拟机OD打开程序按2下F8&#xff0c;发现ESP变红&#xff0c;根据ESP定律&#xff0c;在该地址右键 -> HW break下断点 继续按2下F9&#xff0c;来到灰色…...

ORA-12514

第一步&#xff0c;去这个地址&#xff0c;查查你的服务名是否存在 第二步&#xff0c;没查到就是你服务名写错了&#xff0c;查到了就退出我的解答...

MyBatis-PlusDruid数据源

MyBatis-Plus简介 MyBatis-Plus&#xff08;简称MP&#xff09;是一个MyBatis的增强工具&#xff0c;它在MyBatis的基础上进行了增强而不改变其原有的功能&#xff0c;旨在简化开发、提高效率。以下是对MyBatis-Plus的详细简介&#xff1a; 一、基本概述 定义&#xff1a;MyBat…...

C#中chart绘制曲线

官网资料&#xff1a;Chart 类 (System.Windows.Forms.DataVisualization.Charting) | Microsoft Learn 类的 Chart 两个重要属性是 Series 和 ChartAreas 属性&#xff0c;这两个属性都是集合属性。 Series集合属性存储Series对象&#xff0c;这些对象用于存储要显示的数据以…...

c++数据结构算法题讲解

那么从本期文章开始&#xff0c;会尽量带大家一起刷题 第一题 题目 关键词 思路 源代码 class MinStack { public: void push(int val) { _st.push(val); if(_minst.empty() || val < _minst.top()) { _minst.push(val); } } void pop() { if(_st.top() _minst.top()) {…...

间隙锁在其他数据库管理系统中的类似实现

间隙锁在其他数据库管理系统中的类似实现 一、引言 在 MySQL 中,间隙锁在可重复读事务隔离级别下起到了防止幻读的重要作用。那么在其他数据库管理系统中,是否也有类似的机制来实现类似的功能呢?了解其他数据库管理系统中与间隙锁类似的实现,可以帮助我们更好地理解不同数…...

OpenCV 与 YoloV3的结合使用:目标实时跟踪

目录 代码分析 1. YOLO 模型加载 2. 视频加载与初始化 3. 视频帧处理 4. 物体检测 5. 处理检测结果 6. 边界框和类别显示 7. 帧率&#xff08;FPS&#xff09;计算 8. 结果显示与退出 9. 资源释放 整体代码 效果展示 总结 代码分析 这段代码使用 YOLO&#xff08…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...