【深度学习】神经网络-怎么理解DNN、CNN、RNN?

怎么分清DNN、RNN、CNN?
最“大”的概念是人工神经网络(Artificial Neural Network, ANN),它是较为广泛的术语,通常指的是一类模拟生物神经网络的数学模型,其中包括神经元、权重和连接。在这个术语下,可以包括深度神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)等不同类型的网络。

第一代神经网络又称为感知机,在1950年左右被提出来,它的算法只有两层,输入层、输出层,主要是线性结构。它不能解决线性不可分的问题,对稍微复杂一些的函数都无能为力,如异或操作。
为了解决第一代神经网络的缺陷,在1980年左右Rumelhart、Williams等人提出第二代神经网络多层感知机(MLP)。和第一代神经网络相比,第二代在输入层之间有多个隐含层的感知机,可以引入一些非线性的结构,解决了之前无法模拟异或逻辑的缺陷。
第二代神经网络让科学家们发现神经网络的层数直接决定了它对现实的表达能力,但是随着层数的增加,优化函数愈发容易出现局部最优解的现象,由于存在梯度消失的问题,深层网络往往难以训练,效果还不如浅层网络。
2006年Hinton采取无监督预训练(Pre-Training)的方法解决了梯度消失的问题,使得深度神经网络变得可训练,将隐含层发展到7层,神经网络真正意义上有了“深度”,由此揭开了深度学习的浪潮,第三代神经网络开始正式兴起。
第三代神经网络称为深度神经网络(Deep Neural Network,DNN),它是人工神经网络的一种形式,通过有效组织处理大量参数,以实现处理数据和解决复杂问题的功能。DNN使用前馈神经网络(FNN)作为基础结构,具有很多层,甚至可以达到数百层。每一层都代表一个学习阶段,通过这些层的处理,深度神经网络可以对输入的数据进行高度抽象和复杂表示。
简单来说,深度神经网络就是一些有足够多的层组成的神经网络,大多数层都包含了抽象的参数向量和一个激活函数。在分类问题中,深度神经网络通过已知的数据进行训练,使神经网络能够了解什么样的数据属于哪一类。然后,将未知的数据输入到神经网络中,神经网络会根据已知的数据对其进行分类。深度神经网络的分类能力使其在许多领域都有广泛的应用,如图像识别、语音识别、自然语言处理、医疗诊断等。

卷积神经网络CNN
卷积神经网络主要是模拟人的视觉神经系统提出来的。以CNN做人脸识别任务为例,先得到一些像素信息,再往上层得到一些边界信息,然后再往上提取就是一些人脸的部件信息,包括眼睛、耳朵、眉毛嘴巴等,最后是人脸识别,这整个过程和人的视觉神经系统是非常相似的。

卷积神经网络的结构依旧包括输入层、隐藏层和输出层,其中卷积神经网络的隐含层包含卷积层、池化层和全连接层3类常见构筑。
接下来我们简单讲解下卷积、池化、全连接。
-
卷积层的功能是对输入数据进行特征提取,其内部包含多个卷积核,一个卷积核覆盖的原始图像的范围叫做感受野(权值共享)。一次卷积运算(哪怕是多个卷积核)提取的特征往往是局部的,难以提取出比较全局的特征,因此需要在一层卷积基础上继续做卷积计算,这就是多层卷积。

-
在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。池化层包含预设定的池化函数,其功能是将特征图中单个点的结果替换为其相邻区域的特征图统计量。通过这种池化的操作,有助于减少计算量,提高网络的泛化能力,并使模型对输入图像的平移、旋转和缩放更加鲁棒,从而使得特征的表达更加稳定。
-
全连接层的作用是将卷积层和池化层提取的特征进行整合,并进行最终的分类或回归任务。全连接层的特点是每个神经元与前一层的所有神经元相连,形成一个密集的连接网络。
在图像识别领域,卷积神经网络可以自动学习和提取图像中的特征,从而实现高效的图像分类和目标检测任务。卷积神经网络是专门为图像处理设计的深度神经网络,它可以有效地处理图像数据中的空间信息,提取出有用的特征。
循环神经网络RNN
DNN存在着一个无法解决的问题:无法对时间序列上的变化进行建模。为了应对这种需求,业内提出了上文中提到的递归神经网络RNN。区别于前馈神经网络,RNN正是通过存储记忆的方式来解决序列到序列的问题。
在普通的全连接网络中,DNN的隐层只能够接受到当前时刻上一层的输入,而在RNN中,神经元的输出可以在下一时间段直接作用到本身。换句话说,就是递归神经网络它的隐层不但可以接收到上一层的输入,也可以得到上一时刻当前隐层的输入。
这一个变化的重要意义就在于使得神经网络具备了历史记忆的功能,原则上它可以看到无穷长的历史信息,这非常适合于像语音语言这种具有长时相关性的任务。
在语音识别领域,循环神经网络可以学习到语音信号中的复杂模式,从而实现对语音的高精度识别。循环神经网络是专门为序列数据处理设计的深度神经网络,它可以有效地处理序列数据中的时间依赖性信息。
学习视频推荐
深度学习-CNN合集-哔哩哔哩-白话先生NIT
深度学习-RNN合集-哔哩哔哩-白话先生NIT
相关文章:
【深度学习】神经网络-怎么理解DNN、CNN、RNN?
怎么分清DNN、RNN、CNN? 最“大”的概念是人工神经网络(Artificial Neural Network, ANN),它是较为广泛的术语,通常指的是一类模拟生物神经网络的数学模型,其中包括神经元、权重和连接。在这个术语下&#…...
组织应在其网络安全策略中考虑MLSecOps吗?
随着越来越多的组织拥抱人工智能 (AI) 和机器学习 (ML) 来优化操作并获得竞争优势,关于如何最好地保障这一强大技术的安全性的问题也日益受到关注。其中的核心是用于训练ML模型的数据,这对模型的行为和性能有着根本影响。因此,组织需要密切关…...
Windows安装HeidiSQL教程(图文)
一、软件简介 HeidiSQL是一款开源的数据库管理工具,主要用于管理MySQL、MariaDB、SQL Server、PostgreSQL和SQLite等数据库系统。它提供了直观的用户界面,使用户可以轻松地连接到数据库服务器、执行SQL查询、浏览和编辑数据、管理数据库结构等操作。 跨…...
存储课程学习笔记5_iouring的练习(io_uring,rust_echo_bench,fio)
我们知道,在处理大量高并发网络时,一般考虑并发,以及设计对应的方案(比如select,poll,epoll)等。 那么如果频繁进行文件或者磁盘的操作,如何考虑性能和并发,这里就可以考虑用到io_uring。 0&a…...
前端HTML+CSS+JS的入门学习
一.HTML HTML(HyperText Markup Language)即超文本标记语言,是用于创建网页和网页应用程序的标准标记语言。它不是一种编程语言,而是一种标记语言,通过一系列的元素(elements)来告诉浏览器如何…...
通信电路和信道的区别与联系
通信电路和信道的区别 区分通信电路和信道主要在于理解它们的功能范围与作用机制。通信电路侧重于信息的处理和信号的调整,而信道更侧重于信号的实际传输。电路可以视为信道的接入点,但它们的设计和优化考量各不相同。例如,电路设计重视的传…...
基于深度学习的蛋白质结构预测
基于深度学习的蛋白质结构预测是利用深度学习模型来预测蛋白质的三维结构,这在生物学和药物研发领域具有重要意义。蛋白质的功能在很大程度上取决于其三维结构,准确预测蛋白质结构可以帮助科学家理解蛋白质的功能和相互作用,并加速药物发现的…...
基于 Redis 的分布式锁实现原理及步骤
实现分布式锁的目的是在分布式系统中,保证多个节点之间对共享资源的并发访问是互斥的。常用的分布式锁实现方式有以下几种:基于数据库、基于 Redis、基于 Zookeeper。下面详细介绍基于 Redis 的分布式锁实现原理及步骤。 一、Redis 分布式锁原理 唯一性…...
21_动态规划与数据结构结合
菜鸟:老鸟,我最近在处理一个数据操作时遇到了性能问题。我需要计算一个数组中某些子数组的和,但直接计算太慢了,有没有什么更高效的方法? 老鸟:你提到的这个问题其实可以通过动态规划结合数据结构来解决。…...
React与Vue的对比
异同总结 相同点: 都有组件化思想 都支持服务器端渲染 都有Virtual DOM(虚拟dom) 数据驱动视图 都有支持native的方案:Vue的weex、React的React native 都有自己的构建工具:Vue的vue-cli、React的Create React A…...
精密量测软件(仿KLA免费浏览器程序ProfilmOnline)
KLA在线软件分析图 软件仿KLA公司免费浏览器软件ProfilmOnline,软件地址ProfilmOnline - 用于3D轮廓仪和AFM的表面成像、分析和测量软件 可以直接从profilmonline上下载3D图加载对比分析,当前已完成的内容有 1、调平 2、尖峰去噪 3、能量密度图&…...
Java项目: 基于SpringBoot+mybatis+maven实现的IT技术交流和分享平台(含源码+数据库+毕业论文)
一、项目简介 本项目是一套基于SpringBootmybatismaven实现的IT技术交流和分享平台 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美…...
STL02——手写简单版本的list
手写一个简单版本的list 设计一个名为 List 的 List 类,该类具有以下功能和特性: 1、基础成员函数 构造函数:初始化 List 实例析构函数:清理资源,确保无内存泄露 2、核心功能 在 List 末尾添加元素在 List 开头添…...
基于SpringBoot的校园自助洗衣服务管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSpringBootVueMySQL的校园自助洗衣服务…...
音视频入门基础:AAC专题(2)——使用FFmpeg命令生成AAC裸流文件
在文章《音视频入门基础:PCM专题(1)——使用FFmpeg命令生成PCM音频文件并播放》中讲述了生成PCM文件的方法。通过FFmpeg命令可以把该PCM文件转为AAC裸流文件: ./ffmpeg -f s16le -ar 44100 -ac 2 -i audio1.pcm audio1.aac 由于…...
第 6 篇 自定义 Helm Chart
文章目录 第 1 步:创建 chartChart.yamlvalues.yamltemplates 模板文件_helpers.tpl 模板辅助文件serviceaccount.yamlservice.yamldeployment.yamlhpa.yamlingress.yamlNOTES.txttests/test-connection.yaml 第 2 步:检查 chart 格式第 3 步:…...
Jenkis部署vue前端项目提示:sh: vue-cli-service: command not found
解决方法: 1. 进入到/var/lib/jenkins/workspace/项目名下,查看是否有node_modules,如果没有执行 npm install 2. 如果执行npm intall的过程中提示:npm ERR! 407 Proxy Authentication Required - GET http://registry.npm.taob…...
中介者模式mediator
学习笔记,原文链接 https://refactoringguru.cn/design-patterns/mediator 减少对象之间混乱无序的依赖关系。 该模式会限制对象之间的直接交互, 迫使它们通过一个中介者对象进行合作。...
GO语言性能分析
Go语言基准测试与pprof工具性能分析详解 在现代软件开发中,性能优化是一个重要的环节。Go语言提供了强大的工具来进行基准测试和性能分析,其中 testing 包用于基准测试,而 pprof 工具用于性能分析。本文将详细讲解如何使用这些工具来进行性能…...
关于 PreparedStatement
Mysql 层面的语法也支持 prepare 这个确实第一次见 PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Statement”).EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Statement”).DEALLOCATE PREPARE releases a prepared…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
