深度学习速通系列:混淆矩阵是什么
混淆矩阵(Confusion Matrix)是一种评估分类模型性能的工具,尤其在监督学习中用于分析分类结果。它通过一个矩阵的形式,将模型的预测结果与实际标签进行比较,从而可以清晰地看到模型在各个类别上的表现。以下是混淆矩阵的基本构成和相关指标:
混淆矩阵的基本构成:
对于二分类问题,混淆矩阵是一个 2x2 的矩阵,包含以下四个要素:
- True Positives (TP):模型正确预测为正类的样本数。
- True Negatives (TN):模型正确预测为负类的样本数。
- False Positives (FP):模型错误预测为正类的样本数(实际上是负类)。
- False Negatives (FN):模型错误预测为负类的样本数(实际上是正类)。
对于多分类问题,混淆矩阵是一个 NxN 的矩阵,其中 N 是类别的数量。矩阵中的每个元素 (i, j) 表示实际类别为 i 而被预测为类别 j 的样本数。
从混淆矩阵衍生的评估指标:
-
准确度(Accuracy):模型正确预测的样本数占总样本数的比例。
Accuracy = T P + T N T P + T N + F P + F N \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN -
精确率(Precision):模型预测为正类中实际为正类的比例。
Precision = T P T P + F P \text{Precision} = \frac{TP}{TP + FP} Precision=TP+FPTP -
召回率(Recall)或真正率(True Positive Rate, TPR):所有实际正类中被正确预测为正类的比例。
Recall = T P T P + F N \text{Recall} = \frac{TP}{TP + FN} Recall=TP+FNTP -
F1分数(F1-Score):精确率和召回率的调和平均数,用于综合考虑精确率和召回率。
F1-Score = 2 × Precision × Recall Precision + Recall \text{F1-Score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} F1-Score=2×Precision+RecallPrecision×Recall -
特异性(Specificity)或真负率(True Negative Rate, TNR):所有实际负类中被正确预测为负类的比例。
Specificity = T N T N + F P \text{Specificity} = \frac{TN}{TN + FP} Specificity=TN+FPTN
应用场景:
混淆矩阵广泛应用于机器学习、数据挖掘、模式识别等领域,特别是在分类问题中。它帮助我们理解模型在不同类别上的性能,特别是在处理数据不平衡的情况下,单一的准确度指标可能不足以全面评估模型性能。混淆矩阵能够揭示模型在预测正类和负类上的能力,从而指导我们进行模型优化和调整。
实现:
在Python中,可以使用scikit-learn库中的confusion_matrix函数来计算混淆矩阵,示例代码如下:
from sklearn.metrics import confusion_matrix
import numpy as np# 假设 y_true 是真实标签,y_pred 是模型预测标签
y_true = np.array([1, 0, 1, 1, 0, 1, 0])
y_pred = np.array([1, 0, 1, 0, 0, 1, 1])# 计算混淆矩阵
cm = confusion_matrix(y_true, y_pred)
print("Confusion Matrix:\n", cm)
这段代码会输出一个 2x2 的混淆矩阵,其中包含了TP, TN, FP, FN的值。
相关文章:
深度学习速通系列:混淆矩阵是什么
混淆矩阵(Confusion Matrix)是一种评估分类模型性能的工具,尤其在监督学习中用于分析分类结果。它通过一个矩阵的形式,将模型的预测结果与实际标签进行比较,从而可以清晰地看到模型在各个类别上的表现。以下是混淆矩阵…...
综合评价 | 基于熵权-变异系数-博弈组合法的综合评价模型(Matlab)
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标的离散程度越大, 该指标对综合评价的影响(即权重&…...
模板与泛型编程笔记(一)
1. 推荐书籍 《C新经典 模板与泛型编程》难得的很容易看得懂的好书,作者讲技术不跳跃,娓娓道来,只要花点时间就能看懂。 2. 笔记 模板为什么要用尖括号?因为便于编译器解析,可以将模板和普通函数声明分开。其实尖括…...
ubuntu 和windows用samba服务器实现数据传输
1,linux安装samba服务器 sudo apt-get install samba samba-common 2,linux 配置权限,修改目录权限,linux下共享的文件权限设置。 sudo chmod 777 /home/lark -R 3. 添加samba用户 sudo smbpasswd -a lark 4,配置共享…...
NISP 一级 | 3.2 网络安全威胁
关注这个证书的其他相关笔记:NISP 一级 —— 考证笔记合集-CSDN博客 网络安全威胁主要来自攻击者对网络及信息系统的攻击,攻击者可以通过网络嗅探、网络钓鱼、拒绝服务、远程控制、社会工程学等网络攻击手段,获得目标计算机的控制权ÿ…...
【技术实践】MySQL分表分库全解析:从理论到实战
文章目录 【技术实践】MySQL分表分库全解析:从理论到实战1. 引言1.1 MySQL数据库面临的挑战1.2 分表分库的概念与优势 2. MySQL分表分库的基本原理2.1 水平分表2.2 垂直分表2.3 水平分库2.4 分表分库的选择标准 3. 实现分表分库的技术方案3.1 中间件解决方案3.2 自定…...
动手学深度学习(一)简介+预备知识+基础知识(上)
一、简介 1、机器学习 机器学习研究如何使用经验改善计算机系统的性能。 2、表征学习 表征学习是机器学习的一类,研究的是,如何自动学习出数据合适的表示方式,更好地由输入得到正确的输出。 3、深度学习 深度学习是具有多级表示的表征学…...
dubbo 服务消费原理分析之应用级服务发现
文章目录 前言一、MigrationRuleListener1、迁移状态模型2、Provider 端升级3、Consumer 端升级4、服务消费选址5、MigrationRuleListener.onRefer6、MigrationRuleHandler.doMigrate6、MigrationRuleHandler.refreshInvoker7、MigrationClusterInvoker.migrateToApplicationFi…...
QT如何在对话框中插入表格
在Qt中,如果你想要在对话框中插入表格,通常会使用QTableWidget或QTableView结合QStandardItemModel(对于QTableView)或直接在QTableWidget中操作。这里,我将介绍如何使用QTableWidget在对话框中插入表格,因…...
如何使用SSHFS通过SSH挂载远程文件系统?
SHFS(SSH 文件系统)是一款功能强大的工具,它允许用户通过 SSH 挂载远程文件系统,从而提供一种安全便捷的方式来访问远程文件,就像访问本地文件一样。本文将引导您完成使用 SSHFS 挂载远程文件系统的过程,为…...
SEELE 框架是
SEELE 框架是一个相对新颖的组织管理和优化框架,旨在帮助团队或企业更好地实现目标。它的核心思想是通过科学的管理方法来提升组织的执行力和决策能力。以下是对 SEELE 框架的详细讲解,包括定义、内容、实施步骤、实施策略以及推荐的实践方法和工具。 一…...
高教社杯数模竞赛特辑论文篇-2013年B题:碎纸复原模型与算法(续)(附MATLAB代码实现)
目录 4.3 三维碎纸复原模型 4.3.1 三维模型的降维 4.3.2 三维碎纸复原算法 4.3.3 模型求解 五、模型改进与推广 5.1 模型优点 5.2 模型缺点 5.3 模型改进 5.3.1 适用彩色图片的改进 5.3.2 最小干预度算法 5.4 模型推广 参考文献 代码实现 模拟退火法代码 GUI 程序代码 层次特征…...
Java操作Miscrosoft Office各类文件格式的开源免费工具库
Aspose.Words库 是一个商业Java库,还封装了常用的word、pdf、防伪码、水印等诸多功能。Apache 库需要注意的前置问题 问题1:Word的两个格式doc和docx,POI并没有提供统一的处理类。分别用 HWPFDocument 处理doc文档,用 XWPFTempl…...
Redis 缓存淘汰算法策略详解
引言 Redis 作为一款高性能的内存数据库,在处理大量数据时,由于内存有限,需要在数据达到设定的内存上限后,使用缓存淘汰策略来决定哪些数据应该被移除,以腾出空间存储新的数据。这一过程被称为缓存淘汰,通…...
Kubernetes PV生命周期的四个阶段
Kubernetes PV生命周期的四个阶段 1. Available(可用)2. Bound(已绑定)3. Released(已释放)4. Failed(失败)💖The Begin💖点点关注,收藏不迷路💖 在Kubernetes中,PersistentVolume(PV)的生命周期主要包括以下四个阶段: 1. Available(可用) 状态:PV刚创建…...
Azure OpenAI models being unable to correctly identify model
题意:Azure OpenAI模型无法正确识别模型。 问题背景: In Azure OpenAI Studio, while I am able to deploy a GPT-4 instance, the responses are based solely on GPT-3.5 Turbo. I test the same prompts in my personal ChatGPT sub and it returns …...
项目小结二()
一.个人信息的界面 这里可以进行用户信息的修改,并渲染数据上去 二.这两天,出现的问题: 1.mybatis中 字段取别名 (还没验证,是否正确) 问题描述:由于实体类中的变量名,与数据库中…...
《论层次架构及其在软件系统中的应用》写作框架,软考高级系统架构设计师
论文真题 层次架构作为软件系统设计的一种基本模式,对于实现系统的模块化、可维护性和可扩展性具有至关重要的作用。在软件系统的构建过程中,采用层次架构不仅可以使系统结构更加清晰,还有助于提高开发效率和质量。因此,对层次架构的理解和应用是软件工程师必备的技能之一…...
校篮球联赛系统小程序的设计
管理员账户功能包括:系统首页,个人中心,管理员管理,公告管理,基础数据管理,球队管理,球员管理,赛事信息管理,用户管理,轮播图信息 微信端账号功能包括&#…...
在 HKCR 新增项和值
HKEY_CLASSES_ROOT HKEY_CURRENT_USER\Software\Classes ∪ HKEY_LOCAL_MACHINE\Software\Classes ; 1. Win11 HKCR 根键默认是 System 所有, Win10 HKCR 根键默认是 Administrators 所有。 ; 2. 以 System、管理员 还是 普通用户 登录系统? ; 在注册表里&#x…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
