当前位置: 首页 > news >正文

在AI的时代,程序员如何才不被淘汰

随着人工智能技术的迅猛发展,大模型(Large Language Models, LLMs)正逐渐成为IT行业的热点。对于程序员来说,转行大模型领域不仅意味着新的机遇,也面临着诸多挑战。本文将探讨程序员转行大模型的机遇与挑战,以及如何顺利实现转型。

在这里插入图片描述

机遇:

技术升级:大模型领域的技术不断迭代,程序员可以通过学习大模型相关技术,提升自己的技术水平,实现职业成长。

市场需求:随着AI技术的广泛应用,大模型领域的市场需求不断增长,为程序员提供了丰富的就业机会。

薪资待遇:大模型领域技术人才稀缺,程序员成功转行后,有望获得更高的薪资待遇和职业发展空间。

跨界合作:大模型领域的跨学科特性,使得程序员有机会与不同领域的专业人士合作,拓宽视野,丰富工作经验。

挑战:

技术门槛:大模型领域涉及深度学习、自然语言处理等前沿技术,程序员需要克服技术门槛,系统学习相关知识。

知识体系重构:从编程转向大模型领域,程序员需要重构自己的知识体系,适应新的技术栈和业务逻辑。

学习资源不足:大模型领域相对较新,相关学习资源和资料相对有限,程序员需要主动寻找和积累学习资源。

就业竞争激烈:大模型领域技术人才需求量大,但同时也有大量专业人才涌入,程序员需要不断提升自己的竞争力。

转型策略:

明确目标:程序员在转行前,要明确自己的职业规划和目标,了解大模型领域的具体岗位需求。

系统学习:通过在线课程、专业书籍、实战项目等多种途径,系统学习大模型领域的相关知识。

积累实践经验:积极参与开源项目、实战项目等,积累大模型领域的实践经验,提升自己的技术实力。

拓展人脉:加入相关技术社区、论坛,参加行业会议、研讨会,与业内人士交流,拓展人脉资源。

调整心态:面对转行过程中的困难和挑战,程序员要保持积极的心态,勇于尝试,不断调整自己的学习方法和策略。

总之,程序员转行大模型领域既有机遇也有挑战。通过明确目标、系统学习、积累实践经验、拓展人脉和调整心态,程序员可以顺利实现转型,抓住AI时代的新机遇。

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

相关文章:

在AI的时代,程序员如何才不被淘汰

随着人工智能技术的迅猛发展,大模型(Large Language Models, LLMs)正逐渐成为IT行业的热点。对于程序员来说,转行大模型领域不仅意味着新的机遇,也面临着诸多挑战。本文将探讨程序员转行大模型的机遇与挑战&#xff0c…...

tabBar设置底部菜单选项以及iconfont图标,setTabBar设置TabBar和下拉刷新API

tabBartabBar属性:设置底部 tab 的表现 ​ ​ ​ ​ 首先在pages.json页面写一个tabBar对象,里面放入list对象数组,里面至少要有2个、最多5个 tab, 如果只有一个tab的话,H5(浏览器)依然可以显示底部有一个导航栏,如果没有,需要重启后才有,小程序则报错,只有2个以上才可以…...

2024C题prompt

题目 我正在进行数学建模,需要你为我提供帮助。下面我会将赛题背景和问题发送给你,请你为我提供比赛思路和指导。 以下是赛题背景和赛题说明,不是问题: 农作物的种植策略 根据乡村的实际情况,充分利用有限的耕地资源&#xff0c…...

Numpy中数组的形状处理

目录 将多维数组降为一维数组竖直方向或水平方向数组的堆叠 数组形状处理的手段主要有reshape,resize,ravel,flatten,vstack,hstack,row_stack,column_stack,下面通过简单 的案例来解释这些方法…...

【动态规划】子序列问题二(数组中不连续的一段)

子序列问题二 1.最长定差子序列2.最长的斐波那契子序列的长度3.最长等差数列4.等差数列划分 II - 子序列 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励,我们一起努力吧!😃&am…...

可视耳勺方便吗?可视耳勺热销第一名品牌!

在生活中,耳部清洁是我们常常会关注却又容易忽视细节的一项日常护理。传统挖耳勺有着不可视的局限性,只能凭感觉和经验反复刮蹭耳朵,很容易将耳垢越捅越深,而且还会刮伤耳道。因此,可视耳勺应运而生,它通过…...

micropython 3-wire spi 9bit 写入的问题

网上猛找把,没有,找不到,mpy不愧是没朋友的缩写,没有咋办,自己造! 此库特别适用那些rgb屏的初始化,大多用3线spi,好家伙rgb用了十多个引脚现在想起来省引脚了是吧,就差这…...

导致JVM内存泄露的ThreadLocal详解

1. ThreadLocal介绍 1.1 什么是ThreadLocal Java官方文档中的描述:ThreadLocal类用来提供线程内部的局部变量。这种变量在多线程环境下访问(通过get和set方法访问)时能保证各个线程的变量相对独立于其他线程内的变量。ThreadLocal实例通常来…...

windows下关闭解除占用端口的进程

环境:windows 10 场景:启动某一应用程序时,提示其他应用已占用此端口,比如端口2425。 解决步骤: 1/3、打开windows的命令提示符,输入以下命令,查找占用此端口2425的PID号: # win…...

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取相机当前数据吞吐量(Python)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK里函数来获取相机当前数据吞吐量(Python) Baumer工业相机Baumer工业相机的数据吞吐量的技术背景CameraExplorer如何查看相机吞吐量信息在NEOAPI SDK里通过函数获取相机接口吞吐量 Baumer工业相机通过NEOAPI…...

版权与开源协议:一场创新与自由的边界之争

在数字时代的浪潮中,版权与开源协议作为知识产权领域的两大支柱,既相互依存又暗自较劲,共同绘制着科技创新的宏伟蓝图。本文将带您深入这场创新与自由的边界之争,探讨版权与开源协议之间的微妙关系,以及它们如何共同推…...

学生用的蓝牙耳机推荐有哪些?实测四款实力出众机型!

在当今数字化学习环境中,学生对蓝牙耳机的需求日益增长,无论是在线课程的学习、图书馆的集中阅读还是日常通勤中的音频资料复习,一款性能优异、舒适度高且价格合理的蓝牙耳机对学生来说至关重要,面对市场上琳琅满目的产品选择&…...

MIT6.824 课程-GFS

GFS 原文:https://zhuanlan.zhihu.com/p/113161014 搬运用于参考学习 概述 存储(Storage)是一个非常关键的抽象,用途广泛。 GFS 论文还提到了很多关于容错、备份和一致性的问题。 GFS 本身是 Google 内部一个很成功的实用系统&…...

力扣第200题 岛屿数量

前言 记录一下刷题历程 力扣第200题 岛屿数量 岛屿数量 原题目: 给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。 岛屿总是被水包围,并且每座岛屿只能由水平…...

协议头,wireshark,http

目录 协议头 ip头 udp头 mac层 网络工具 telnet wireshark Http 一、HTTP 协议介绍 二、HTTP 协议的工作过程 三、使用抓包工具抓取报文 四、获取到http请求报文: 五、http请求(request) (一)、认识URL 项…...

vscode ssh离线远程连接ubuntu调试

遇见问题: 1 ssh连接上无法启动服务器的虚拟环境; 2 ssh连接上启动服务器的虚拟环境后无法打断点; 对于问题需要参考下面连接安装python和debugy的插件拓展,并且配置json文件link。VSCode - 离线安装扩展python插件教程_vscode…...

Jenkins 通过 Version Number Plugin 自动生成和管理构建的版本号

步骤 1:安装 Version Number Plugin 登录 Jenkins 的管理界面。进入 “Manage Jenkins” -> “Manage Plugins”。在 “Available” 选项卡中搜索 “Version Number Plugin”。选中并安装插件,完成后可能需要重启 Jenkins。 步骤 2:配置…...

元学习之应用案例

现在在做元学习的时候,我们最常拿来测 试元学习技术的任务叫做少样本图像分类,简单来讲就是每一个任务都只有几张图片,每一 个类别只有几张图片。比如我们使用图1的案例为例说明。现在分类的任务是分为三个 类别,每个类别都只有两…...

网络高级(学习)2024.9.10

目录 一、Modbus简介 1.起源 2.特点 3.应用场景 二、Modbus TCP协议 1.特点 2.协议格式 3.MBAP报文头 4.功能码 5.寄存器 (1)线圈寄存器,类比为开关量,每一个bit都对应一个信号的开关状态。 (2&#xff09…...

【软件全文档】项目概要设计说明书(2024实际项目Word原件)

一、 引言 (一) 编写目的 (二) 范围 (三) 文档约定 (四) 术语 二、 项目概要 (一) 建设背景 (二) 建设目标 (三&#xff0…...

7.4.分块查找

一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

Java 加密常用的各种算法及其选择

在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...