YOLOv5改进 | 模块缝合 | C3 融合RVB + EMA注意力机制【二次融合】
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
专栏目录 :《YOLOv5入门 + 改进涨点》专栏介绍 & 专栏目录 | 目前已有90+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进
C3-RVB 模块是结合了 C3、RepViT Block 和 EMA 注意力机制的优势,实现了轻量化和高效的模型设计。C3模块利用轻量级的 ELAN 注意力机制缓解梯度消失问题,并有效提取关键特征。RepViT Block (RVB) 作为 RepViT 模型的核心组件,通过重新排列 MobileNetV3 模块的 3x3 深度可分离卷积并整合成统一分支。EMA 注意力机制通过对历史数据进行指数移动平均,有效降低噪声或异常值的影响,提高模型的鲁棒性。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
专栏地址: YOLOv5改进+入门——持续更新各种有效涨点方法 点击即可跳转
目录
1.原理
2. 将C3-RVB添加到yolov5网络中
2.1 C3-RVB代码实现
2.2 C3_RVB的神经网络模块代码解析
2.3 新增yaml文件
2.4 注册模块
2.5 执行程序
3. 完整代码分享
4. GFLOPs
5. 进阶
6. 总结
1.原理
论文地址:Efficient Multi-Scale Attention Module with Cross-Spatial Learning——点击即可跳转
官方代码:官方代码仓库——点击即可跳转
C3-RVB是轻量级网络模块的关键组件,旨在实现高效的特征提取和融合。
核心原理:
-
C3-RVB结构:YOLOv5网络中的C3结构,利用轻量级的特征提取来防止梯度消失并有效捕获关键特征。C3结构包括Conv层和ELAN机制以增强性能。C3-RVB模块是此结构的扩展,其中集成了RepViT Blocks来替换Bottleneck层。RepViT Blocks通过在推理过程中重新参数化网络架构来提高特征表示和处理效率。
-
RepViT Blocks:是C2f-RVB的核心。RepViT Blocks包括深度卷积和通道间交互机制,可增强特征多样性和表达力,在处理轻量级网络任务时特别有用。这使得模型能够捕捉到更丰富的细节,而不会显著增加计算成本。
-
EMA注意力机制:C2f-RVB中引入了EMA注意力机制来平滑特征权重,减轻检测任务中来自低级特征的噪音。该机制使网络能够更准确地聚焦于重要特征,同时减少背景噪音带来的干扰,提高检测鲁棒性。
总体而言,C2f-RVB模块旨在优化特征提取和融合,专注于提高准确性,同时保持适合在实时应用中部署的轻量级架构。
2. 将C3-RVB添加到yolov5网络中
2.1 C3-RVB代码实现
关键步骤一: 将下面的代码粘贴到\yolov5\models\common.py中
from timm.models.layers import SqueezeExciteclass RepVGGDW(torch.nn.Module):"""RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""def __init__(self, ed) -> None:super().__init__()self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)self.dim = edself.act = nn.SiLU()def forward(self, x):"""Performs a forward pass of the RepVGGDW block.Args:x (torch.Tensor): Input tensor.Returns:(torch.Tensor): Output tensor after applying the depth wise separable convolution."""return self.act(self.conv(x) + self.conv1(x))def forward_fuse(self, x):"""Performs a forward pass of the RepVGGDW block without fusing the convolutions.Args:x (torch.Tensor): Input tensor.Returns:(torch.Tensor): Output tensor after applying the depth wise separable convolution."""return self.act(self.conv(x))@torch.no_grad()def fuse(self):"""Fuses the convolutional layers in the RepVGGDW block.This method fuses the convolutional layers and updates the weights and biases accordingly."""conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)conv_w = conv.weightconv_b = conv.biasconv1_w = conv1.weightconv1_b = conv1.biasconv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])final_conv_w = conv_w + conv1_wfinal_conv_b = conv_b + conv1_bconv.weight.data.copy_(final_conv_w)conv.bias.data.copy_(final_conv_b)self.conv = convdel self.conv1class EMA(nn.Module):def __init__(self, channels, factor=8):super(EMA, self).__init__()self.groups = factorassert channels // self.groups > 0self.softmax = nn.Softmax(-1)self.agp = nn.AdaptiveAvgPool2d((1, 1))self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)def forward(self, x):b, c, h, w = x.size()group_x = x.reshape(b * self.groups, -1, h, w) # b*g,c//g,h,wx_h = self.pool_h(group_x)x_w = self.pool_w(group_x).permute(0, 1, 3, 2)hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))x_h, x_w = torch.split(hw, [h, w], dim=2)x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())x2 = self.conv3x3(group_x)x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x12 = x2.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hwx21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x22 = x1.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hwweights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)return (group_x * weights.sigmoid()).reshape(b, c, h, w)class Conv2d_BN(torch.nn.Sequential):def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,groups=1, bn_weight_init=1, resolution=-10000):super().__init__()self.add_module('c', torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))self.add_module('bn', torch.nn.BatchNorm2d(b))torch.nn.init.constant_(self.bn.weight, bn_weight_init)torch.nn.init.constant_(self.bn.bias, 0)@torch.no_grad()def fuse_self(self):c, bn = self._modules.values()w = bn.weight / (bn.running_var + bn.eps)**0.5w = c.weight * w[:, None, None, None]b = bn.bias - bn.running_mean * bn.weight / \(bn.running_var + bn.eps)**0.5m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups,device=c.weight.device)m.weight.data.copy_(w)m.bias.data.copy_(b)return mclass Residual(nn.Module):def __init__(self, fn):super(Residual, self).__init__()self.fn = fndef forward(self, x):return self.fn(x) + xclass SEAM(nn.Module):def __init__(self, c1, c2, n, reduction=16):super(SEAM, self).__init__()if c1 != c2:c2 = c1self.DCovN = nn.Sequential(*[nn.Sequential(Residual(nn.Sequential(nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=3, stride=1, padding=1, groups=c2),nn.GELU(),nn.BatchNorm2d(c2))),nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=1, stride=1, padding=0, groups=1),nn.GELU(),nn.BatchNorm2d(c2)) for i in range(n)])self.avg_pool = torch.nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(c2, c2 // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(c2 // reduction, c2, bias=False),nn.Sigmoid())self._initialize_weights()# self.initialize_layer(self.avg_pool)self.initialize_layer(self.fc)def forward(self, x):b, c, _, _ = x.size()y = self.DCovN(x)y = self.avg_pool(y).view(b, c)y = self.fc(y).view(b, c, 1, 1)y = torch.exp(y)return x * y.expand_as(x)def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.xavier_uniform_(m.weight, gain=1)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def initialize_layer(self, layer):if isinstance(layer, (nn.Conv2d, nn.Linear)):torch.nn.init.normal_(layer.weight, mean=0., std=0.001)if layer.bias is not None:torch.nn.init.constant_(layer.bias, 0)class RepViTBlock(nn.Module):def __init__(self, inp, oup, use_se=True):super(RepViTBlock, self).__init__()self.identity = inp == ouphidden_dim = 2 * inpself.token_mixer = nn.Sequential(RepVGGDW(inp),SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),)self.channel_mixer = Residual(nn.Sequential(# pwConv2d_BN(inp, hidden_dim, 1, 1, 0),nn.GELU(),# pw-linearConv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),))def forward(self, x):return self.channel_mixer(self.token_mixer(x))class RepViTBlock_EMA(RepViTBlock):def __init__(self, inp, oup, use_se=True):super().__init__(inp, oup, use_se)self.token_mixer = nn.Sequential(RepVGGDW(inp),EMA(inp) if use_se else nn.Identity(),)class C3_RVB(C3):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e) # hidden channelsself.m = nn.Sequential(*(RepViTBlock(c_, c_, False) for _ in range(n)))
2.2 C3_RVB的神经网络模块代码解析
C3_RVB
模块是 C3
结构的扩展,集成了 RepViTBlocks,通过高效的重新参数化和特征提取来提高性能。
-
C3 结构:基础
C3
模块融合多尺度特征,同时保持轻量级结构。它由多个具有深度卷积和高效特征融合机制的层组成。原始C3
专注于捕获丰富的特征表示,同时平衡计算成本。 -
RepViT 块集成:
C3_RVB
模块中引入的 RepViTBlock 通过添加重新参数化的卷积进一步增强了C3
的功能。这使模块能够通过在推理过程中更有效地融合特征来适应不同的计算环境。 RepViT 模块还包括深度卷积和可选的挤压和激发 (SE) 模块,以提高空间注意力。 -
通道和标记混合:每个
RepViTBlock
都使用 标记混合(深度卷积和 SE/EMA 注意力)和 通道混合(逐点卷积)的组合。标记混合器提取不同的特征表示,而通道混合器增强通道间关系,从而实现更有效的特征融合。 -
通过重新参数化提高效率:
RepViTBlock
在推理过程中将多分支结构重新参数化为单分支配置,在保持模型准确性的同时减少计算开销。这使得C3_RVB
模块既轻量又具有计算效率。 -
EMA Attention:
C3_RVB
还可以在 token 混合阶段利用EMA注意力机制,其中 EMA 有助于平滑特征权重并减少浅层噪声,从而增强模型在实时或低功耗环境下的鲁棒性。
C3_RVB
模块将 C3
的多尺度特征融合与 RepViTBlocks
的高效特征提取相结合,使其成为需要高精度和计算效率的轻量级模型的理想选择。
2.3 新增yaml文件
关键步骤二:在下/yolov5/models下新建文件 yolov5_C3-RVB.yaml并将下面代码复制进去
- 目标检测yaml文件
# Ultralytics YOLOv5 🚀, AGPL-3.0 license# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:- [10, 13, 16, 30, 33, 23] # P3/8- [30, 61, 62, 45, 59, 119] # P4/16- [116, 90, 156, 198, 373, 326] # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3_RVB, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3_RVB, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3_RVB, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3_RVB, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]# YOLOv5 v6.0 head
head: [[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3_RVB, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3_RVB, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3_RVB, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3_RVB, [1024, False]], # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
- 语义分割yaml文件
# Ultralytics YOLOv5 🚀, AGPL-3.0 license# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:- [10, 13, 16, 30, 33, 23] # P3/8- [30, 61, 62, 45, 59, 119] # P4/16- [116, 90, 156, 198, 373, 326] # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3_RVB, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3_RVB, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3_RVB, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3_RVB, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]# YOLOv5 v6.0 head
head: [[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3_RVB, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3_RVB, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3_RVB, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3_RVB, [1024, False]], # 23 (P5/32-large)[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Segment (P3, P4, P5)]
温馨提示:本文只是对yolov5基础上添加模块,如果要对yolov5n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。
# YOLOv5n
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple# YOLOv5s
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple# YOLOv5l
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple# YOLOv5m
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple# YOLOv5x
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
2.4 注册模块
关键步骤三:在yolo.py的parse_model函数替换添加C3_RVB
2.5 执行程序
在train.py中,将cfg的参数路径设置为yolov5_C3_RVB.yaml的路径
建议大家写绝对路径,确保一定能找到
🚀运行程序,如果出现下面的内容则说明添加成功🚀
from n params module arguments0 -1 1 7040 models.common.Conv [3, 64, 6, 2, 2]1 -1 1 73984 models.common.Conv [64, 128, 3, 2]2 -1 3 95488 models.common.C3_RVB [128, 128, 3]3 -1 1 295424 models.common.Conv [128, 256, 3, 2]4 -1 6 577536 models.common.C3_RVB [256, 256, 6]5 -1 1 1180672 models.common.Conv [256, 512, 3, 2]6 -1 9 3042304 models.common.C3_RVB [512, 512, 9]7 -1 1 4720640 models.common.Conv [512, 1024, 3, 2]8 -1 3 5351424 models.common.C3_RVB [1024, 1024, 3]9 -1 1 2624512 models.common.SPPF [1024, 1024, 5]10 -1 1 525312 models.common.Conv [1024, 512, 1, 1]11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']12 [-1, 6] 1 0 models.common.Concat [1]13 -1 3 1627136 models.common.C3_RVB [1024, 512, 3, False]14 -1 1 131584 models.common.Conv [512, 256, 1, 1]15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']16 [-1, 4] 1 0 models.common.Concat [1]17 -1 3 420352 models.common.C3_RVB [512, 256, 3, False]18 -1 1 590336 models.common.Conv [256, 256, 3, 2]19 [-1, 14] 1 0 models.common.Concat [1]20 -1 3 1364992 models.common.C3_RVB [512, 512, 3, False]21 -1 1 2360320 models.common.Conv [512, 512, 3, 2]22 [-1, 10] 1 0 models.common.Concat [1]23 -1 3 5351424 models.common.C3_RVB [1024, 1024, 3, False] 24 [17, 20, 23] 1 457725 Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 512, 1024]]
YOLOv5_C3_RVB summary: 863 layers, 30798205 parameters, 30798205 gradients, 70.8 GFLOPs
3. 完整代码分享
https://pan.baidu.com/s/1su4IwBjlzdYGEy2XZg7nIA?pwd=9jg9
提取码: 9jg9
4. GFLOPs
关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution
未改进的GFLOPs
改进后的GFLOPs
5. 进阶
可以结合损失函数或者卷积模块进行多重改进
YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocuSIoU等多种损失函数——点击即可跳转
6. 总结
C3_RVB
模块结合了多尺度特征融合和高效的特征提取,通过引入 RepViTBlock 实现了轻量化和高性能的设计。它基于 C3
结构,专注于捕捉丰富的特征表示,同时保持较低的计算成本。模块中每个 RepViTBlock 包含了 token mixing 和 channel mixing,通过深度卷积和点卷积增强不同通道之间的特征关系,进一步优化特征融合效率。此外,C3_RVB
使用了 重参数化 技术,将多分支结构在推理阶段简化为单分支,大幅减少了计算开销,而不会降低模型的表现。同时,模块可以通过 EMA注意力机制 平滑特征权重,减少来自浅层的噪声干扰,提升模型在实际应用中的鲁棒性。总体而言,C3_RVB
通过多尺度融合、轻量化卷积和注意力机制,实现了高效的特征提取和较低的计算负担,适用于需要精度和效率平衡的任务。
相关文章:

YOLOv5改进 | 模块缝合 | C3 融合RVB + EMA注意力机制【二次融合】
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv5入门 改…...
mysql 更改默认端口号 新增用户密码 赋予权限
默认情况下,mysql的端口是3306,超级用户是root,很多情况下会被黑客扫描到,成为肉鸡(作者以前就有过经理),数据库表直接丢失,勒索我。 所以我这里介绍下,更改默认端口&am…...

吐血整理nacos 作为springcloud的配置中心和注册中心
吐血整理nacos 作为配置中心和注册中心 环境版本nacos 版本 nacos启动单机模式启动配置数据库 Spring cloud 连接注册Nacos配置中心导入依赖 注册中心 环境版本 SpringBoot版本SpringCloud版本cloud Alibaba版本2.6.132021.0.52021.0.5.0 参照依据 spring-cloud-alibab 对应…...
【秋招笔试】9.09阿里国际秋招(已改编)-三语言题解
🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收集…...

sql语句在sqlserver中能查询出结果,但是代码中查不出来
右键登录名,选择属性,勾选下面两张图片中的项,即可。...

【机器学习】决策树与随机森林:模型对比与应用案例分析
文章目录 一.引言 在现代数据科学的世界中,决策树和随机森林是两个非常重要且广泛使用的机器学习算法。它们不仅因其高效性和强大的表现力而受到青睐,而且在解决实际问题时也表现出了令人印象深刻的能力。本篇文章将深入探讨这两个算法,帮助读…...
Apache SeaTunnel基础介绍
一、什么是Apache SeaTunnel? Apache SeaTunnel(最初名为Waterdrop)是一个开源的分布式数据集成平台,专为大规模数据处理设计。SeaTunnel可以从多种数据源读取数据,进行实时流式处理或批处理,然后将处理后…...

阿里旗下土耳其电商Trendyol计划进军欧洲市场
阿里旗下土耳其电商Trendyol计划进军欧洲市场 近年来,阿里巴巴集团在全球电商领域的布局持续深化,其旗下土耳其电商巨头Trendyol更是凭借其出色的市场表现和强劲的增长势头,成为了备受瞩目的焦点。近日,Trendyol宣布了一项重要战…...

IBM中国研发裁员与AIGC浪潮下的中国IT产业新篇章:挑战、机遇与未来展望
文章目录 一、跨国公司战略调整与全球IT版图的重构1. 跨国公司的战略考量2. 中国IT产业的应对策略 二、人才市场的深刻变革与应对策略1. 人才流失与再就业压力2. 人才培养与引进策略3. 个人职业规划与发展 三、AIGC浪潮下的中国IT产业新机遇1. AIGC技术的潜力与前景2. 中国IT产…...

基于Python的影视推荐平台的设计与实现--附源码79147
摘要 本论文主要论述了如何基于Python和大数据开发一个影视推荐平台,本系统将严格按照软件开发流程进行各个阶段的工作,面向对象编程思想进行项目开发。在引言中,作者将论述影视推荐平台的当前背景以及系统开发的目的,后续章节将严…...
Baumer工业相机堡盟工业相机如何通过BGAPISDK使用短曝光功能(曝光可设置1微秒)(C语言)
Baumer工业相机堡盟工业相机如何通过BGAPISDK使用短曝光功能(曝光可设置1微秒)(C语言) Baumer工业相机Baumer工业相机BGAPISDK和短曝光功能的技术背景Baumer工业相机通过BGAPISDK使用短曝光功能1.引用合适的头文件2.通过BGAPISDK使…...
Ubuntu 安装PostgreSQL
安装 PostgreSQL 包: 使用 apt-get 命令安装 PostgreSQL 客户端和服务器包:sudo apt update sudo apt install postgresql postgresql-client启动 PostgreSQL 服务: 在 Ubuntu 中,PostgreSQL 服务默认会自动启动。你可以使用以下命…...
sqlalchemy FastAPI 前端实现数据库增删改查
sqlalchemy FastAPI 前端实现数据库增删改查 仅个人学习笔记,感谢点赞关注! 知识点 连接数据库sqlalchemy 创建表结构FastAPI get post put delete操作FastAPI 请求体 路径和修改参数 依赖项 代码 # -*- ecoding: utf-8 -*- # Author: SuperLong # Em…...

QQueue调用dequeue闪退解决方法
QQueue调用dequeque闪退的解决方法 先看一下Qt帮助文档里面的说明 这个函数假设队列不是空的。 那么我们在调用之前,需要先判断队列是不是空的,如果不是空的,就调用该函数。 if (!queue.isEmpty()) {QString info queue.dequeue(); }这样…...

CSP-J算法基础 计数排序
文章目录 前言计数排序计数排序的过程总结 代码实现计数排序总结 前言 计数排序 计数排序(Counting Sort)是一种线性时间复杂度的排序算法,适用于范围有限的整数排序。它通过计数每个值出现的次数,依次排列这些值。该算法不通过比…...
Java泛型类型解析
解析泛型类型 获取字段泛型类型 **java.lang.reflect.Field#getGenericType**: 作用:返回字段的泛型类型。返回类型:Type。如果字段是一个泛型类型,这个方法将返回一个表示这个泛型类型的 Type 对象,比如 ParameterizedType&…...
EasyExcel 学习之 导出 “类型及精度问题”
目录 现象缘由类型问题精度/格式问题精度问题格式问题 解决 现象 Excel 导出时,可能面临几个问题: 类型问题:常见类型转换、URL 转图片等精度/格式问题:数字、日期转换 缘由 类型问题 Excel 常见的 API 有两种,Ea…...
从视频中每隔10帧截取一帧并保存为图片
要从视频中每隔10帧截取一帧并保存为图片,可以使用 OpenCV 库。 import cv2# 视频文件的路径 video_path path/to/your/video.mp4# 创建一个 VideoCapture 对象 cap cv2.VideoCapture(video_path)# 检查是否成功打开视频文件 if not cap.isOpened():print("E…...

防火墙、firewalld指令、更改yum源为阿里云的yum源及常见问题
一、防火墙分类 1、硬件防火墙 2、软件防火墙(咱们昨天学的就属于这个) 3、waf 4、下一代防火墙 二、工作原理 1、通过对进出口数据的(数据、端口、IP等)进行过滤,达到对内网数据的保护。 2、防护危险的一堵墙、…...

5G Multicast/Broadcast Services(MBS) (二) Multicast
这篇是Multicast handling的overview,正文开始。 值得注意的是,对于5MBS multicast,UE只有处于 RRC connected和Inactive时,网络侧才可以 通过MRB将MBS multicast数据传输到 UE;处于Idle态只能进行MBS broadcast过程。 对于multicast涉及的RN...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...

密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...