期望极大算法(Expectation Maximization Algorithm,EM)
定义
输入:观测变量数据Y,隐变量数据Z,联合分布P(Y,Z| θ \theta θ),条件分布PP(Z,Y| θ \theta θ);
输出:模型参数 θ \theta θ
(1)选择参数的初值 θ ( 0 ) , 开始迭代 ; \theta^{(0)},开始迭代; θ(0),开始迭代;
(2)E步:记 θ ( i ) 为第 i 次迭代参数 \theta^{(i)}为第i次迭代参数 θ(i)为第i次迭代参数\theta 的估计值 , 在第 的估计值,在第 的估计值,在第i+1$次迭代的E步,计算
Q ( θ , θ ( i ) ) = E Z [ l o g P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ] = ∑ Z l o g P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) Q(\theta,\theta^{(i)}) = E_Z\big[ log P(Y,Z|\theta)|Y,\theta^{(i)} \big] = \sum_{Z}log P(Y,Z|\theta) P(Z|Y,\theta^{(i)}) Q(θ,θ(i))=EZ[logP(Y,Z∣θ)∣Y,θ(i)]=Z∑logP(Y,Z∣θ)P(Z∣Y,θ(i))
P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)}) P(Z∣Y,θ(i)):给定观测数据 Y Y Y和当前的参数估计 θ ( i ) \theta^{(i)} θ(i)下隐变量数据 Z Z Z的条件概率分布;
(3)M步:求使 Q ( θ , θ ( i ) ) Q(\theta,\theta^{(i)}) Q(θ,θ(i))极大化的 θ \theta θ,确定第 i + 1 i+1 i+1次迭代的参数的估计值 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)
θ ( i + 1 ) = a r g ∗ m a x θ Q ( θ , θ ( i ) ) \theta^{(i+1)} = arg * \mathop{max}\limits_{\theta} Q(\theta,\theta^{(i)}) θ(i+1)=arg∗θmaxQ(θ,θ(i))
(4)重复第(2)步和第(3)步,直到收敛。
输入空间
T = { ( x 1 , x 2 , … , x N } T=\left\{(x_1,x_2,\dots,x_N\right\} T={(x1,x2,…,xN}
import numpy as np
import random
import math
import timedef loadData(mu0, sigma0, mu1, sigma1, alpha0, alpha1):'''初始化数据集这里通过服从高斯分布的随机函数来生成数据集:param mu0: 高斯0的均值:param sigma0: 高斯0的方差:param mu1: 高斯1的均值:param sigma1: 高斯1的方差:param alpha0: 高斯0的系数:param alpha1: 高斯1的系数:return: 混合了两个高斯分布的数据'''#定义数据集长度为1000length = 1000#初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来#满足alpha的作用data0 = np.random.normal(mu0, sigma0, int(length * alpha0))#第二个高斯分布的数据data1 = np.random.normal(mu1, sigma1, int(length * alpha1))#初始化总数据集#两个高斯分布的数据混合后会放在该数据集中返回dataSet = []#将第一个数据集的内容添加进去dataSet.extend(data0)#添加第二个数据集的数据dataSet.extend(data1)#对总的数据集进行打乱(其实不打乱也没事,只不过打乱一下直观上让人感觉已经混合了# 读者可以将下面这句话屏蔽以后看看效果是否有差别)random.shuffle(dataSet)#返回伪造好的数据集return dataSet
# mu0是均值μ
# sigmod是方差σ
#在设置上两个alpha的和必须为1,其他没有什么具体要求,符合高斯定义就可以
alpha0 = 0.3; mu0 = -2; sigmod0 = 0.5
alpha1 = 0.7; mu1 = 0.5; sigmod1 = 1#初始化数据集
dataSetList = loadData(mu0, sigmod0, mu1, sigmod1, alpha0, alpha1)
np.shape(dataSetList)
print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f'%(alpha0, mu0, sigmod0, alpha1, mu1, sigmod1))
统计学习方法
模型
a r g ∗ m a x θ Q ( θ , θ ( i ) ) arg * \mathop{max}\limits_{\theta} Q(\theta,\theta^{(i)}) arg∗θmaxQ(θ,θ(i))
策略
L ( θ ) = l o g ( ∑ Z P ( Y ∣ Z , θ ) P ( Z ∣ θ ) ) L(\theta) = log\bigg( \sum_{Z} P(Y|Z,\theta) P(Z|\theta) \bigg) L(θ)=log(Z∑P(Y∣Z,θ)P(Z∣θ))
算法
高斯混合模型
P ( y ∣ θ ) = ∑ k = 1 K α k ϕ ( y ∣ θ k ) , α k : 系数 , α k ≥ 0 , ∑ k = 1 K α k = 1 ; ϕ ( y ∣ θ k ) : 高斯分布密度 , θ k = ( μ k , σ k 2 ) P(y|\theta) = \sum_{k=1}^K \alpha_k \phi(y|\theta_k),\alpha_k:系数,\alpha_k \geq 0,\sum_{k=1}^K \alpha_k = 1;\phi(y|\theta_k):高斯分布密度,\theta_k=(\mu_k,\sigma_k^2) P(y∣θ)=k=1∑Kαkϕ(y∣θk),αk:系数,αk≥0,k=1∑Kαk=1;ϕ(y∣θk):高斯分布密度,θk=(μk,σk2)
ϕ ( y ∣ θ k ) = 1 2 π σ k e x p ( − ( y − μ k ) 2 2 σ k 2 ) \phi(y|\theta_k) = \frac{1}{\sqrt{2\pi}\sigma_k} exp \bigg( - \frac{(y-\mu_k)^2}{2\sigma_k^2} \bigg) ϕ(y∣θk)=2πσk1exp(−2σk2(y−μk)2)
def calcGauss(dataSetArr, mu, sigmod):'''根据高斯密度函数计算值:param dataSetArr: 可观测数据集:param mu: 均值:param sigmod: 方差:return: 整个可观测数据集的高斯分布密度(向量形式)'''result = (1 / (math.sqrt(2 * math.pi) * sigmod)) * \np.exp(-1 * (dataSetArr - mu) * (dataSetArr - mu) / (2 * sigmod**2))#返回结果return result
Q ( θ , θ ( i ) ) = E Z [ l o g P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ] = ∑ Z l o g P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) Q(\theta,\theta^{(i)}) = E_Z\big[ log P(Y,Z|\theta)|Y,\theta^{(i)} \big] = \sum_{Z}log P(Y,Z|\theta) P(Z|Y,\theta^{(i)}) Q(θ,θ(i))=EZ[logP(Y,Z∣θ)∣Y,θ(i)]=Z∑logP(Y,Z∣θ)P(Z∣Y,θ(i))
P ( Z ∣ Y , θ ( i ) ) : 给定观测数据 Y 和当前的参数估计 θ ( i ) 下隐变量数据 Z 的条件概率分布; P(Z|Y,\theta^{(i)}):给定观测数据Y和当前的参数估计\theta^{(i)}下隐变量数据Z的条件概率分布; P(Z∣Y,θ(i)):给定观测数据Y和当前的参数估计θ(i)下隐变量数据Z的条件概率分布;
def E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1):'''依据当前模型参数,计算分模型k对观数据y的响应度:param dataSetArr: 可观测数据y:param alpha0: 高斯模型0的系数:param mu0: 高斯模型0的均值:param sigmod0: 高斯模型0的方差:param alpha1: 高斯模型1的系数:param mu1: 高斯模型1的均值:param sigmod1: 高斯模型1的方差:return: 两个模型各自的响应度'''#计算y0的响应度#先计算模型0的响应度的分子gamma0 = alpha0 * calcGauss(dataSetArr, mu0, sigmod0)#模型1响应度的分子gamma1 = alpha1 * calcGauss(dataSetArr, mu1, sigmod1)#两者相加为E步中的分布sum = gamma0 + gamma1#各自相除,得到两个模型的响应度gamma0 = gamma0 / sumgamma1 = gamma1 / sum#返回两个模型响应度return gamma0, gamma1
θ ( i + 1 ) = a r g ∗ m a x θ Q ( θ , θ ( i ) ) \theta^{(i+1)} = arg * \mathop{max}\limits_{\theta} Q(\theta,\theta^{(i)}) θ(i+1)=arg∗θmaxQ(θ,θ(i))
def M_step(muo, mu1, gamma0, gamma1, dataSetArr):mu0_new = np.dot(gamma0, dataSetArr) / np.sum(gamma0)mu1_new = np.dot(gamma1, dataSetArr) / np.sum(gamma1)sigmod0_new = math.sqrt(np.dot(gamma0, (dataSetArr - muo)**2) / np.sum(gamma0))sigmod1_new = math.sqrt(np.dot(gamma1, (dataSetArr - mu1)**2) / np.sum(gamma1))alpha0_new = np.sum(gamma0) / len(gamma0)alpha1_new = np.sum(gamma1) / len(gamma1)#将更新的值返回return mu0_new, mu1_new, sigmod0_new, sigmod1_new, alpha0_new, alpha1_new
def EM_Train(dataSetList, iter = 500):'''根据EM算法进行参数估计:param dataSetList:数据集(可观测数据):param iter: 迭代次数:return: 估计的参数'''#将可观测数据y转换为数组形式,主要是为了方便后续运算dataSetArr = np.array(dataSetList)#步骤1:对参数取初值,开始迭代alpha0 = 0.5; mu0 = 0; sigmod0 = 1alpha1 = 0.5; mu1 = 1; sigmod1 = 1#开始迭代step = 0while (step < iter):#每次进入一次迭代后迭代次数加1step += 1#步骤2:E步:依据当前模型参数,计算分模型k对观测数据y的响应度gamma0, gamma1 = E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1)#步骤3:M步mu0, mu1, sigmod0, sigmod1, alpha0, alpha1 = \M_step(mu0, mu1, gamma0, gamma1, dataSetArr)#迭代结束后将更新后的各参数返回return alpha0, mu0, sigmod0, alpha1, mu1, sigmod1
alpha0, mu0, sigmod0, alpha1, mu1, sigmod1 = EM_Train(dataSetList)
print('Parameters predict:')
print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f' % (alpha0, mu0, sigmod0, alpha1, mu1, sigmod1))
假设空间(Hypothesis Space)
{ a r g ∗ m a x θ Q ( θ , θ ( i ) ) } \left\{ arg * \mathop{max}\limits_{\theta} Q(\theta,\theta^{(i)}) \right\} {arg∗θmaxQ(θ,θ(i))}
输出
θ \theta θ
相关文章:
期望极大算法(Expectation Maximization Algorithm,EM)
定义 输入:观测变量数据Y,隐变量数据Z,联合分布P(Y,Z| θ \theta θ),条件分布PP(Z,Y| θ \theta θ); 输出:模型参数 θ \theta θ (1)选择参数的初值 θ ( 0 ) , 开始迭代 ; \theta^{(0)},开始迭代; θ(0),开始迭代; (2)E步:记 θ ( i ) 为第 i 次迭代参数 \theta^{(i)}为第…...

初级练习[4]:多表查询——表联结
目录 多表查询:表联结示例 查询有两门以上的课程不及格的同学的学号及其平均成绩 查询所有学生的学号、姓名、选课数、总成绩 查询平均成绩大于85的所有学生的学号、姓名和平均成绩 查询学生的选课情况:学号,姓名,课程号,课程名称 查询出每门课程的及格人数和不及格人数 …...

基于JAVA+SpringBoot+Vue的中药实验管理系统
基于JAVASpringBootVue的中药实验管理系统 前言 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末附源码下载链接🍅 哈…...

移动硬盘读取出错结构损坏?数据恢复实战指南
移动硬盘困境:读取出错与结构损坏 在日常的数据存储与传输中,移动硬盘以其大容量、便携性成为了众多用户的首选。然而,当移动硬盘遭遇读取出错或结构损坏的困境时,那些珍贵的文件、照片、视频等数据便岌岌可危,让人心…...
Web安全之HTTPS调用详解和证书说明案例示范
随着互联网的高速发展,网络安全成为了一个不可忽视的话题,特别是在涉及用户敏感信息的业务系统中。在此背景下,使用HTTPS取代HTTP成为了大势所趋。本文将以电商交易系统为例,详细介绍HTTPS的重要性,并探讨如何通过HTTP…...
man命令学习记录
使用man来查看命令的用法 man ls 想了解Linux命令的用法假设你想查ls命令的更多信息,输入man ls,就会打开man page(man是manual的缩写,因此man page就是“手册页面”),显示关于ls命令各个方面的信息。 通常…...
Linux三剑客-grep
grep介绍 全拼: Global search REgular expression and Print out line. 作用: 文本搜索工具,根据用户指定的“模式(过滤条件)”对目标文本逐行进行匹配检查,打印匹配到的行。 模式: 有正则表达…...

备忘录模式memento
学习笔记,原文链接 https://refactoringguru.cn/design-patterns/memento 允许生成对象状态的快照并在以后将其还原。备忘录不会影响它所处理的对象的内部结构, 也不会影响快照中保存的数据。...
5-【JavaWeb】JUnit 单元测试及JUL 日志系统
1. 使用 JUnit 进行单元测试 JUnit 是 Java 中非常流行的单元测试框架,MyBatis 与 JUnit 可以很好地结合,来测试持久层代码的正确性。 1.1 添加 JUnit 依赖 在使用 JUnit 之前,需要在 pom.xml 中引入 JUnit 依赖。 <dependency><…...

多人开发小程序设置体验版的痛点
抛出痛点 在分配任务时,我们将需求分为三个分支任务,分别由前端A、B、C负责: 前端A: HCC-111-实现登录功能前端B: HCC-112-实现用户注册前端C: HCC-113-实现用户删除 相应地,我们创建三个功能分支: feature_HCC-111-实现登录功能feature_HCC-112-实现用户注册feature_HCC-1…...

【Kubernetes】常见面试题汇总(七)
目录 20.简述 Kubernetes 创建一个 Pod 的主要流程? 21.简述 Kubernetes 中 Pod 的重启策略? 20.简述 Kubernetes 创建一个 Pod 的主要流程? Kubernetes 中创建一个 Pod 涉及多个组件之间联动,主要流程如下: &#…...
EmguCV学习笔记 C# 11.1 DnnInvoke类
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…...

论文解读 | ACL2024 Outstanding Paper:因果指导的主动学习方法:助力大语言模型自动识别并去除偏见...
点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 点击阅读原文观看作者直播讲解回放! 作者简介 孙洲浩,哈尔滨工业大学SCIR实验室博士生 概述 尽管大语言模型(LLMs)展现出了非常强大的能力,但它们仍然…...

xLSTM模型学习笔记
笔记来源:bilibili LSTM 回顾 原始的 LSTM 是为了解决 RNN 时序反向传播中梯度消失和爆炸问题而提出的。 其所谓的门控机制,其实就是一种时序上的注意力机制,相当于把不同时间进行"掺和",是对时序信息的一种选择性控制…...
woocommerce 调用当前product_tag 为标题
要在 WooCommerce 中调用当前产品标签(product tag)作为标题,你可以使用以下代码。这段代码将获取当前产品标签的名称,并将其显示为标题。 <?php // 获取当前产品标签名称 $current_tag single_term_title(, false);// 检查是…...

音视频开发:基于sdl的pcm播放器
源码 /*** SDL2播放PCM*** 本程序使用SDL2播放PCM音频采样数据。SDL实际上是对底层绘图* API(Direct3D,OpenGL)的封装,使用起来明显简单于直接调用底层* API。* 测试的PCM数据采用采样率44.1k, 采用精度S16SYS, 通道数2** 函数调…...

[产品管理-6]:NPDP新产品开发 - 4 - 战略 - 创新支持战略,支持组织的总体创新战略(平台战略、技术战略、营销战略、知识产权战略、能力建设战略)
目录 一、创新支持战略概述 二、平台战略:大平台小产品战略 2.1 概述 1、平台战略的定义 2、平台战略的特点 3、平台战略的应用领域 4、平台战略的成功案例 5、平台战略的发展趋势 2.2 大平台小产品战略 1)大平台的建设 2)、小产品…...

Cursor:程序员的AI助手,开启智能编程新时代
在当今快节奏的软件开发世界,效率和准确性是成功的关键。而 Cursor,作为一款创新的人工智能编程工具,正在极大地改变着编程的面貌,为开发者带来前所未有的便捷与惊喜。 智能代码生成 Cursor 利用强大的人工智能模型,…...
OpenAI 刚刚发布了新的Sora视频——实现的真人效果令人惊叹
在 YouTube 上发布了两段由专业创作者制作的新的“Sora Showcase”视频。这些视频展示了尚未发布的 Sora AI 视频模型的惊人潜力。 Sora 于今年二月首次宣布,但由于生成时间、成本和错误信息的潜在风险,光年AI 仅向一小部分创作者 开放了该模型。 自So…...
计算机视觉学习路线
计算机视觉是一门让机器理解和解释视觉世界的科学,它涉及到图像识别、图像处理、模式识别等多个方向。学习计算机视觉的路线通常包括以下几个阶段: 数学和编程基础:需要掌握微积分、线性代数、概率论等数学知识,以及Python或C等编…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...