当前位置: 首页 > news >正文

Java的时间复杂度和空间复杂度和常见排序

        

目录

一丶时间复杂度

二丶空间复杂度

三丶Java常见排序

       1. 冒泡排序(Bubble Sort)

        2.插入排序(Insertion Sort)

         3.希尔排序(Shell Sort)

         4.选择排序(Selection Sort)

          5.堆排序(Heap Sort)

           6.归并排序(Merge Sort)

           7.快速排序(Quick Sort)

        8.计数排序(Counting Sort)、桶排序(Bucket Sort) 和 基数排序(Radix Sort)


        简介:时间复杂度和空间复杂度是评估算法性能的两个重要指标,他们分别用于衡量算法执行时间长短和算法所存储空间大小;

一丶时间复杂度

        时间复杂度:他描述了算法执行所需时间和数据规模之间的关系。具体来说,时间复杂度是算法中基本操作语句执行的次数,这次次数随着数据规模的增大而增大。时间复杂度通常用大O表示法(Big O notation)来表示,他忽略了常数因子和低阶项,只保留最高阶项,从而简洁明了的表示出算法的时间增长趋势;例如

  • O(1):表示算法的执行时间是固定,与输入规模无关;
  • O(log n):表示算法的执行时间与输入规模的对数成正比;
  • O(n):表示线性时间复杂度,算法的执行时间与输入规模成线性比例增长;
  • O(n log n):表示算法的执行时间与输入规模的线性对数比例增长;
  • O(n^2):表示平方时间复杂度,算法的执行时间与输入规模的平方成比例增长。

通过分析算法的时间复杂度,可以评估算法的性能,优化算法的效率,从而提高程度的执行速度。

二丶空间复杂度

        空间复杂度:它描述了算法在运行过程中临时占用存储空间的大小与数据规模之间的关系。空间复杂度也是用大O表示法来表示,他衡量的是算法运行过程中额外消耗的存储空间。例如

  • O(1):表示算法的空间复杂度是固定的,与输入规模无关;
  • O(log n):表示线性空间复杂度,算法所需内存与输入规模成线性比例增长
  • O(n^2):表示平方空间复杂度,算法所需内存与输入规模的平方成比例增长。

通过分析算法的空间复杂度,可以避免内存的浪费,提高空间利用率,从而降低算法执行成本,提高程序性能;

三丶Java常见排序

       1. 冒泡排序(Bubble Sort)

        原理:通过重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复的进行直到没有再需要交换,也就是说该数列已经排序完成。

        特点:简单,稳定,单效率低。时间复杂度O(n^2),空间复杂度O(1);

    //冒泡排序public static void bubbleSort(int[] arr) {int n = arr.length;for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-i-1; j++) {if (arr[j] > arr[j+1]) {int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}}
        2.插入排序(Insertion Sort)

        原理:通过构建有序序列,对于未排序数据,在已排序序序列中从后向前扫描,找到相应位置插入;

        特点:稳定排序,适用于少量数据的排序,但是数据接近有序时效率较高。时间复杂度最好的情况下O(n),最坏的情况下O(n^2);空间复杂度O(1);

    //直接插入排序public static void insertionSort(int[] arr) {int n = arr.length;for (int i = 1; i < n; i++) {//取出第二个数据,默认已经排序int key = arr[i];//获取前以为数据的索引int j = i-1;/* 将 arr[0..i-1] 中大于 key 的元素移动到其当前位置的前 1 个位置*/while (j >=0 && arr[j] > key) {arr[j+1] = arr[j];j = j-1;}arr[j+1] = key;}}
         3.希尔排序(Shell Sort)

        原理:是插入排序的一种更高效的改进版本。希尔排序又称为缩小量排序,它将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录基本有序,在对全体记录进行直接插入排序;

        特点:不稳定的排序,时间复杂度依赖于增量序列的选择,但平均性能优于直接插入排序;

时间复杂度:O(n^1.3),空间复杂度O(1);

    //直接排序public static void shellSort(int[] arr) {int n = arr.length;for (int gap = n/2; gap > 0; gap /= 2) {for (int i = gap; i < n; i += 1) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}}
         4.选择排序(Selection Sort)

        原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾;

        特点:不稳定排序,时间复杂度:O(n^2),空间复杂度:O(1);

    //选择排序public void selectionSort(int[] arr) {int n = arr.length;for (int i = 0; i < n-1; i++) {int min_idx = i;for (int j = i+1; j < n; j++) {if (arr[j] < arr[min_idx]) {min_idx = j;}}// 将找到的 Minimum 元素与第一个元素交换int temp = arr[min_idx];arr[min_idx] = arr[i];arr[i] = temp;}}
          5.堆排序(Heap Sort)

        原理:是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或大于)他的父节点;

        特点:不稳定排序,时间复杂度:O(n log n),空间复杂度:O(1);

// 构建最大堆(辅助函数)  
void buildMaxHeap(int arr[]) {  int n = arr.length;  for (int i = n / 2 - 1; i >= 0; i--)  heapify(arr, n, i);  
}  // 调整给定的堆  
void heapify(int arr[], int n, int i) {  int largest = i; // 初始化最大为根  int l = 2 * i + 1; // 左 = 2*i + 1  int r = 2 * i + 2; // 右 = 2*i + 2  // 如果左子节点大于根  if (l < n && arr[l] > arr[largest])  largest = l;  // 如果右子节点是最大值  if (r < n && arr[r] > arr[largest])  largest = r;  // 如果最大值不是根  if (largest != i) {  int swap = arr[i];  arr[i] = arr[largest];  arr[largest] = swap;  // 递归地堆化受影响的子树  heapify(arr, n, largest);  }  
}  // 堆排序函数  
void heapSort(int arr[]) {  int n = arr.length;  buildMaxHeap(arr);  // 一个个从堆顶取出元素  for (int i = n - 1; i > 0; i--) {  // 移动当前根到末尾  int temp = arr[0];  arr[0] = arr[i];  arr[i] = temp;  // 调用max heapify on the reduced heap  heapify(arr, i, 0);  }  
}
           6.归并排序(Merge Sort)

        原理:是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序;

        特点:稳定排序,时间复杂度:O(n log n),空间复杂度:O(n);

public void mergeSort(int[] arr, int l, int r) {  if (l < r) {  // Same as (l+r)/2, but avoids overflow for  // large l and h  int m = l+(r-l)/2;  // Sort first and second halves  mergeSort(arr, l, m);  mergeSort(arr, m+1, r);  merge(arr, l, m, r);  }  
}  // 合并两个已排序的数组部分  
void merge(int arr[], int l, int m, int r) {  // Find sizes of two subarrays to be merged  int n1 = m - l + 1;  int n2 = r - m;  /* Create temp arrays */  int L[] = new int[n1];  int R[] = new int[n2];  /*Copy data to temp arrays*/  for (int i=0; i<n1; ++i)  L[i] = arr[l + i];  for (int j=0; j<n2; ++j)  R[j] = arr[m + 1+ j];  /* Merge the temp arrays */  // Initial indexes of first and second subarrays  int i = 0, j = 0;  // Initial index of merged subarray array  int k = l;  while (i < n1 && j < n2) {  if (L[i] <= R[j]) {  arr[k] = L[i];  i++;  } else {  arr[k] = R[j];  j++;  }  k++;  }  /* Copy remaining elements of L[] if any */  while (i < n1) {  arr[k] = L[i];  i++;  k++;  }  /* Copy remaining elements of R[] if any */  while (j < n2) {  arr[k] = R[j];  j++;  k++;  }  
}
           7.快速排序(Quick Sort)

        原理:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列;

        特点:平均时间复杂度:O(n log n),但是最坏的情况下时间复杂度会变成O(n^2)。空间复杂度取决于递归深度,平均为O(n log n),但最坏情况下需要O(n)的额外空间;

public void quickSort(int[] arr, int low, int high) {  if (low < high) {  // pi is partitioning index, arr[p] is now  // at right place  int pi = partition(arr, low, high);  // Separately sort elements before  // partition and after partition  quickSort(arr, low, pi - 1);  quickSort(arr, pi + 1, high);  }  
}  // 该方法用于分区数组,返回分区索引  
int partition(int arr[], int low, int high) {  int pivot = arr[high];  int i = (low - 1); // index of smaller element  for (int j = low; j < high; j++) {  // If current element is smaller than or  // equal to pivot  if (arr[j] <= pivot) {  i++;  // swap arr[i] and arr[j]  int temp = arr[i];  arr[i] = arr[j];  arr[j] = temp;  }  }  // swap arr[i+1] and arr[high] (or pivot)  int temp = arr[i + 1];  arr[i + 1] = arr[high];  arr[high] = temp;  return i + 1;  
}
        8.计数排序(Counting Sort)桶排序(Bucket Sort) 和 基数排序(Radix Sort)
  • 这些排序算法是非比较型排序算法,其排序效率在某些情况下会高于比较型排序算法。它们各自适用于一定范围的数据,如计数排序适用于一定范围内的整数排序,桶排序和基数排序则适用于外部排序和大数据排序。

 

结尾:喜欢的朋友点个赞吧!!! 

相关文章:

Java的时间复杂度和空间复杂度和常见排序

目录 一丶时间复杂度 二丶空间复杂度 三丶Java常见排序 1. 冒泡排序&#xff08;Bubble Sort&#xff09; 2.插入排序&#xff08;Insertion Sort&#xff09; 3.希尔排序&#xff08;Shell Sort&#xff09; 4.选择排序&#xff08;Selection Sort&#xff09; 5.堆排序&am…...

Qt 学习第十天:标准对话框 页面布局

系统标准对话框 错误对话框 //错误对话框connect(createPro, &QAction::triggered, this, []{//参数1 父亲 参数2 标题 参数3 对话框内显示文本内容 。。。QMessageBox::critical(this, "报错!", "没加头文件!");}); 【运行结果】 信息对话框 co…...

体育数据API纳米足球数据API:足球数据接口文档API示例⑩

纳米体育数据的数据接口通过JSON拉流方式获取200多个国家的体育赛事实时数据或历史数据的编程接口&#xff0c;无请求次数限制&#xff0c;可按需购买&#xff0c;接口稳定高效&#xff1b; 覆盖项目包括足球、篮球、网球、电子竞技、奥运等专题、数据内容。纳米数据API2.0版本…...

[数据集][目标检测]高铁受电弓检测数据集VOC+YOLO格式1245张2类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;1245 标注数量(xml文件个数)&#xff1a;1245 标注数量(txt文件个数)&#xff1a;1245 标注…...

Vuex:深入理解所涉及的几个问题

你好&#xff0c;我是沐爸&#xff0c;欢迎点赞、收藏、评论和关注。 一、Vuex 是什么&#xff1f; Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。 二、Vu…...

vue原理分析(六)研究new Vue()

今天我们来分析使用new Vue() 之前研究时&#xff0c;只是说是在创建一个实例。并没有深入进行研究 在vue的源码中找下Vue的构造函数 function Vue(options) {if (!(this instanceof Vue)) {warn$2(Vue is a constructor and should be called with the new keyword);}this.…...

滑动窗口+动态规划

前言&#xff1a;分析这个题目的时候&#xff0c;就知道要这两个线段要分开&#xff0c;但是要保证得到最优解&#xff0c;那么我们在选取第二根线段的时候&#xff0c;要保证我们第一根线段是左边最优解 并且我们选的两根线段的右端点一定是我们的数组的点&#xff08;贪心思…...

vscode配置django环境并创建django项目

1、创建文件夹 创建文件夹 并在vscode打开 终端输入命令 “ python -m venv env ” 查看目录结构 2、创建项目 在终端输入 django-admin startproject 文件名(这里以myshop为例) 3、创建应用 在myshop打开终端 在终端输入 django-admin startapp 应用名 这里以app1为例…...

WebGL系列教程四(绘制彩色三角形)

目录 1 前言2 varying变量介绍3 开始绘制3.1 声明顶点着色器3.2 声明片元着色器3.3 创建顶点和颜色的缓冲区3.4 指定变量从缓冲区获取值3.5 效果3.6 varying的内涵3.7 完整代码 4 总结 1 前言 上一篇中我们介绍了如何使用缓冲区来绘制三角形&#xff0c;这一篇我们来讲讲如何给…...

通过mxGraph在ARMxy边缘计算网关上实现工业物联网

在当今的工业4.0时代&#xff0c;工业物联网&#xff08;IIoT&#xff09;已经成为制造业转型升级的关键技术之一。ARMxy边缘计算网关作为工业自动化和物联网的重要组成部分&#xff0c;能够为工厂车间提供实时的数据处理能力和智能化服务。而mxGraph作为一种流行的JavaScript库…...

GEE案例:利用sentinel-1数据进行洪水监测分析(直方图统计)

目录 简介 数据 函数 ee.Filter.calendarRange(start, end, field) Arguments: Returns: Filter updateMask(mask) Arguments: Returns: Image 代码 结果 简介 利用sentinel-1数据进行洪水监测分析 数据 COPERNICUS/S1_GRD数据是由欧洲空间局(ESA)的Copernicus项…...

QT 联合opencv 易错点

https://blog.csdn.net/qq_51699436/article/details/135777911 网上已经有大量优秀切详尽的文章来讲述QT联合opencv了&#xff0c;我把容易出错的点列出来备忘 1、在进行opencv进行编译时&#xff0c;要确认好是32位还是64位&#xff0c;因为在创建QT项目的时候QT和opencv要匹…...

例如/举例的使用方法 ,e.g., 以及etc的使用方法

e.g. 例如 for example for the sake of example such as 1 e.g. 是拉丁语 exempli gratia 的缩写意思是“举个例子&#xff0c;比如”&#xff0c;等同于for example、 for the sake of example、such as&#xff0c;使用 e.g. 的目的是用几个例子来说明前面的观点。 2 例…...

20240902-VSCode-1.19.1-部署vcpkg-win10-22h2

20240902-VSCode-1.19.1-部署vcpkg-win10-22h2 软件环境 标签:C++ VSCode mingw gcc13 vcpkg cmake分栏:C++操作系统:Windows10 x64 22h2一、安装VScode-1.19.1 请参考另一篇文章《20240717-VSCode-1.91.1-部署gcc13-C++23-win10-22h2》。 二、安装cmake 本文流程需要安…...

MySQL学习(多表操作)

基本知识 一对多 创建部门表 – 主表 create table if not exists dept(deptno varchar(20) primary key ,name varchar(20) );创建员工表 – 创建外键约束 方式1constraint emp_fk foreign key(dept_id) references dept(deptno) create table if not exists emp(eid varc…...

鸿蒙开发(NEXT/API 12)【网络连接管理】 网络篇

简介 网络连接管理提供管理网络一些基础能力&#xff0c;包括WiFi/蜂窝/Ethernet等多网络连接优先级管理、网络质量评估、订阅默认/指定网络连接状态变化、查询网络连接信息、DNS解析等功能。 说明 为了保证应用的运行效率&#xff0c;大部分API调用都是异步的&#xff0c;对…...

VMware Fusion虚拟机Mac版 安装Ubuntu操作系统教程

Mac分享吧 文章目录 下载镜像地址&#xff1a;[www.macfxb.cn](http://www.macfxb.cn)一、CentOS安装完成&#xff0c;软件打开效果二、Mac中安装Ubuntu虚拟机1️⃣&#xff1a;下载镜像2️⃣&#xff1a;创建虚拟机3️⃣&#xff1a;虚拟机设置4️⃣&#xff1a;虚拟机安装5️…...

基于SpringBoot+Vue+MySQL的房屋租赁管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 二十一世纪互联网的出现&#xff0c;改变了几千年以来人们的生活&#xff0c;不仅仅是生活物资的丰富&#xff0c;还有精神层次的丰富。在互联网诞生之前&#xff0c;地域位置往往是人们思想上不可跨域的鸿沟&#xff0c;信息的…...

虚拟机器配置固定IP地址

新安装的虚拟机&#xff0c;如何配置固定的ip地址&#xff0c;废话少说直接上干货 第一步&#xff1a;在VMarea中 选中你要固定IP的虚拟机器&#xff0c;点击上面的“编辑”按钮&#xff0c;然后找到“虚拟网络编辑器”&#xff0c;选中你要修改的ip VMnet8&#xff0c;然后是…...

用python实现基于形态学的方法,如开运算和闭运算,来去除pcd格式激光点云中的植被

在Python中&#xff0c;你可以使用open3d库来读取和处理pcd格式的点云数据。下面是一个示例代码&#xff0c;展示如何使用形态学操作来去除植被。 首先&#xff0c;确保你已经安装了open3d库&#xff0c;可以使用以下命令进行安装&#xff1a; pip install open3d接下来&…...

QT 绘制简易时钟

原文件 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->startTimer(1000); }Widget::~Widget() {delete ui; }//时钟底座 void Widget::paintEvent(Q…...

为控制器的方法添加必要参数

前言&#xff1a;做这个系统时&#xff0c;要求每次调用接口时要传操作人、操作人电脑ip、菜单id&#xff0c;然后计入log。本来前端读取到然后加入请求头&#xff0c;后端写入log即可。但是老大要求后端也要把控必传参数&#xff0c;避免前端忘记。所以就写了这个。IOperation…...

(计算机网络)应用层

1.为什么需要应用层 应用层提供使用tcp&#xff0c;udp使用的方式 协议就是制定的规则 2.域名服务器概述 域名是唯一的 新增域名&#xff0c;大家都要修改这个文本文件&#xff0c;所以要进行集中管理这个文本文件&#xff0c;而不是使用本地的hosts文件 hosts文件在Windows系统…...

使用3DUNet训练自己的数据集(pytorch)— 医疗影像分割

代码:lee-zq/3DUNet-Pytorch: 3DUNet implemented with pytorch (github.com) 文章<cicek16miccai.pdf (uni-freiburg.de)3D U-Net: Learning Dense Volumetric Segmentation...

【python】—— Python爬虫实战:爬取珠海市2011-2023年天气数据并保存为CSV文件

目录 目标 准备工作 爬取数据的开始时间和结束时间 爬取数据并解析 将数据转换为DataFrame并保存为CSV文件 本文将介绍如何使用Python编写一个简单的爬虫程序,以爬取珠海市2011年至2023年的天气数据,并将这些数据保存为CSV文件。我们将涉及到以下知识点: 使用r…...

U盘文件及文件夹带锁修复

磁盘管理修复工具Disks磁盘管理–针对U盘文件及文件夹带锁修复 本文章只针对统信系统 文章目录 功能概述一、安装工具二、数据备份三、检查文件系统1. 通过启动栏中的“磁盘”或者桌面的“磁盘”启动文件来启动应用:2. 选择U盘设备3. 点击“检查文件系统”按钮(如果无此按钮…...

AnyChart 数据可视化框架

AnyChart 数据可视化框架 AnyChart 是一个灵活的 JavaScript&#xff08;HTML5、SVG、VML&#xff09;图表框架&#xff0c;适合任何需要数据可视化的解决方案。 目录 下载并安装开始插件将 AnyChart 与 TypeScript 结合使用将 AnyChart 与 ECMAScript 6 结合使用技术集成贡献…...

ARM base instruction -- br

BR Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return. 无条件地分支到寄存器中的一个地址&#xff0c;并提示这不是子例程返回。 BR <Xn> BR 跳转到reg内容地址&#xff0c;不会将返回地址…...

编译原理/软件工程核心概念-问题理解

目录 1.程序的编译执行过程 2.指针和引用的区别 3.堆和栈的区别 4.最熟悉的编程语言- Python&#xff1a;介绍PyTorch和TensorFlow框架 5.C与C的区别 6.软件工程是什么&#xff1f; 7.简述瀑布模型 8.敏捷开发方法是什么&#xff1f;它与瀑布模型相比有哪些优势和劣势 1…...

学习pyqt5相关知识回顾

1. 模块 1.1 import导入 1) 模块:是一系列功能的集合体,模块名.功能名,就可以使用模块的功能 2) 首次导入模块,就会立即执行模块里面的内容 3) 当前名称空间会产生一个名字module,指向module.py产生的名称空间.我们可以使用module.name/函数名,来调用module.py里面的内容. …...