当前位置: 首页 > news >正文

redisson中的分布式锁

我的博客大纲

我的后端学习大纲


a.redisson概述:

  • 1.Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)
  • 2.redisson介绍官方文档地址:
  • 3.Redisson它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务
    • 包括(BitSet, Set, Multimap, SortedSet, Map, List, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, AtomicLong, CountDownLatch, Publish / Subscribe, Bloom filter, Remote service, Spring cache, Executor service, Live Object service, Scheduler service)
    • Redisson提供了使用Redis的最简单和最便捷的方法。
    • Redisson的宗旨是促进使用者对Redis的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上。
      在这里插入图片描述

b.各分布式锁介绍:

b1.可重入锁(Reentrant Lock)
b1-1.概述:
  • 1.基于Redis的Redisson分布式可重入锁RLock Java对象实现了java.util.concurrent.locks.Lock接口。
  • 2.如果负责储存这个分布式锁的Redisson节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期
  • 3.默认情况下,看门狗检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。
  • 4.RLock对象完全符合Java的Lock规范。也就是说只有拥有锁的进程才能解锁,其他进程解锁则会抛出IllegalMonitorStateException错误。
  • 5.另外Redisson还通过加锁的方法提供了leaseTime的参数来指定加锁的时间。超过这个时间后锁便自动解开了。
RLock lock = redisson.getLock("anyLock");
// 最常见的使用方法
lock.lock();// 加锁以后10秒钟自动解锁
// 无需调用unlock方法手动解锁
lock.lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS);
if (res) {try {...} finally {lock.unlock();}
}
b1-2.编码实现:
  • 1.引入依赖
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.11.2</version>
</dependency>
  • 2.添加配置
@Configuration
public class RedissonConfig {@Beanpublic RedissonClient redissonClient(){Config config = new Config();// 可以用"rediss://"来启用SSL连接config.useSingleServer().setAddress("redis://172.16.116.100:6379");return Redisson.create(config);}
}
  • 3.代码中使用
@Autowired
private RedissonClient redissonClient;public void checkAndLock() {// 加锁,获取锁失败重试RLock lock = this.redissonClient.getLock("lock");lock.lock();// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){stock.setCount(stock.getCount() - 1);this.stockMapper.updateById(stock);}// 释放锁lock.unlock();
}
  • 4.压力测试:性能跟我们手写的区别不大。
    在这里插入图片描述
  • 5.数据库也没有问题
b2. 公平锁(Fair Lock)
  • 1.基于Redis的Redisson分布式可重入公平锁也是实现了java.util.concurrent.locks.Lock接口的一种RLock对象。
  • 2.同时还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
  • 3.它保证了当多个Redisson客户端线程同时请求加锁时,优先分配给先发出请求的线程。
  • 4.所有请求线程会在一个队列中排队,当某个线程出现宕机时,Redisson会等待5秒后继续下一个线程,也就是说如果前面有5个线程都处于等待状态,那么后面的线程会等待至少25秒。
RLock fairLock = redisson.getFairLock("anyLock");
// 最常见的使用方法
fairLock.lock();// 10秒钟以后自动解锁
// 无需调用unlock方法手动解锁
fairLock.lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = fairLock.tryLock(100, 10, TimeUnit.SECONDS);
fairLock.unlock();
b3. 联锁(MultiLock)
  • 1.基于Redis的Redisson分布式联锁RedissonMultiLock对象可以将多个RLock对象关联为一个联锁,每个RLock对象实例可以来自于不同的Redisson实例。
RLock lock1 = redissonInstance1.getLock("lock1");
RLock lock2 = redissonInstance2.getLock("lock2");
RLock lock3 = redissonInstance3.getLock("lock3");RedissonMultiLock lock = new RedissonMultiLock(lock1, lock2, lock3);
// 同时加锁:lock1 lock2 lock3
// 所有的锁都上锁成功才算成功。
lock.lock();
...
lock.unlock();
b4. 红锁(RedLock)
  • 1.基于Redis的Redisson红锁RedissonRedLock对象实现了Redlock介绍的加锁算法。
  • 2.该对象也可以用来将多个RLock对象关联为一个红锁,每个RLock对象实例可以来自于不同的Redisson实例。
RLock lock1 = redissonInstance1.getLock("lock1");
RLock lock2 = redissonInstance2.getLock("lock2");
RLock lock3 = redissonInstance3.getLock("lock3");
RedissonRedLock lock = new RedissonRedLock(lock1, lock2, lock3);
// 同时加锁:lock1 lock2 lock3
// 红锁在大部分节点上加锁成功就算成功。
lock.lock();
...
lock.unlock();
b5. 读写锁(ReadWriteLock)
b5-1.概述:
  • 1.基于Redis的Redisson分布式可重入读写锁RReadWriteLock Java对象实现了java.util.concurrent.locks.ReadWriteLock接口。
  • 2.其中读锁和写锁都继承了RLock接口。
  • 3.分布式可重入读写锁允许同时有多个读锁和一个写锁处于加锁状态。
b5-2.编码实现:
RReadWriteLock rwlock = redisson.getReadWriteLock("anyRWLock");
// 最常见的使用方法
rwlock.readLock().lock();
// 或
rwlock.writeLock().lock();
// 10秒钟以后自动解锁
// 无需调用unlock方法手动解锁
rwlock.readLock().lock(10, TimeUnit.SECONDS);
// 或
rwlock.writeLock().lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = rwlock.readLock().tryLock(100, 10, TimeUnit.SECONDS);
// 或
boolean res = rwlock.writeLock().tryLock(100, 10, TimeUnit.SECONDS);
...
lock.unlock();

添加StockController方法:

@GetMapping("test/read")
public String testRead(){String msg = stockService.testRead();return "测试读";
}@GetMapping("test/write")
public String testWrite(){String msg = stockService.testWrite();return "测试写";
}

添加StockService方法:

public String testRead() {RReadWriteLock rwLock = this.redissonClient.getReadWriteLock("rwLock");rwLock.readLock().lock(10, TimeUnit.SECONDS);System.out.println("测试读锁。。。。");// rwLock.readLock().unlock();return null;
}public String testWrite() {RReadWriteLock rwLock = this.redissonClient.getReadWriteLock("rwLock");rwLock.writeLock().lock(10, TimeUnit.SECONDS);System.out.println("测试写锁。。。。");// rwLock.writeLock().unlock();return null;
}
b5-3.测试
  • 1.打开开两个浏览器窗口测试:
    • 同时访问写:一个写完之后,等待一会儿(约10s),另一个写开始
    • 同时访问读:不用等待
    • 先写后读:读要等待(约10s)写完成
    • 先读后写:写要等待(约10s)读完成

b6. 信号量(Semaphore)
  • 1.基于Redis的Redisson的分布式信号量(Semaphore)Java对象RSemaphore采用了与java.util.concurrent.Semaphore相似的接口和用法。
  • 2.同时还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RSemaphore semaphore = redisson.getSemaphore("semaphore");
semaphore.trySetPermits(3);
semaphore.acquire();
semaphore.release();
  • 3.在StockController添加方法:
@GetMapping("test/semaphore")
public String testSemaphore(){this.stockService.testSemaphore();return "测试信号量";
}
  • 4.在StockService添加方法:
public void testSemaphore() {RSemaphore semaphore = this.redissonClient.getSemaphore("semaphore");semaphore.trySetPermits(3);try {semaphore.acquire();TimeUnit.SECONDS.sleep(5);System.out.println(System.currentTimeMillis());semaphore.release();} catch (InterruptedException e) {e.printStackTrace();}
}
  • 5.添加测试用例:并发10次,循环一次:
    在这里插入图片描述
  • 6.控制台效果:
控制台11606960790234
1606960800337
1606960800443
1606960805248控制台21606960790328
1606960795332
1606960800245控制台31606960790433
1606960795238
1606960795437
  • 7.由此可知:
    1606960790秒有3次请求进来:每个控制台各1次
    1606960795秒有3次请求进来:控制台2有1次,控制台3有2次
    1606960800秒有3次请求进来:控制台1有2次,控制台2有1次
    1606960805秒有1次请求进来:控制台1有1次
b7. 闭锁(CountDownLatch)
  • 1.基于Redisson的Redisson分布式闭锁(CountDownLatch)Java对象RCountDownLatch采用了与java.util.concurrent.CountDownLatch相似的接口和用法。
RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch");
latch.trySetCount(1);
latch.await();// 在其他线程或其他JVM里
RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch");
latch.countDown();
  • 2.需要两个方法:
    • 一个等待
    • 一个计数countDown给StockController添加测试方法:
@GetMapping("test/latch")
public String testLatch(){this.stockService.testLatch();return "班长锁门。。。";
}
@GetMapping("test/countdown")
public String testCountDown(){this.stockService.testCountDown();return "出来了一位同学";
}
  • 3.给StockService添加测试方法:
public void testLatch() {RCountDownLatch latch = this.redissonClient.getCountDownLatch("latch");latch.trySetCount(6);try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}
}public void testCountDown() {RCountDownLatch latch = this.redissonClient.getCountDownLatch("latch");latch.trySetCount(6);latch.countDown();
}

重启测试,打开两个页面:当第二个请求执行6次之后,第一个请求才会执行。
在这里插入图片描述

相关文章:

redisson中的分布式锁

我的博客大纲 我的后端学习大纲 a.redisson概述&#xff1a; 1.Redisson是一个在Redis的基础上实现的Java驻内存数据网格&#xff08;In-Memory Data Grid&#xff09;2.redisson介绍官方文档地址&#xff1a;3.Redisson它不仅提供了一系列的分布式的Java常用对象&#xff0c;还…...

如何将镜像推送到docker hub

前言 这一篇应该是最近最后一篇关于docker的博客了&#xff0c;咱来个有始有终&#xff0c;将最后一步——上传镜像给他写完&#xff0c;废话不多说&#xff0c;直接进入正题。 登录 首先需要确保登录才能推送到你的仓库中去&#xff0c;在终端输入docker login,输入用户名和…...

GO 匿名函数

GO 匿名函数 文章目录 GO 匿名函数1. **回调函数**2. **goroutine 中的操作**3. **延迟操作&#xff08;defer&#xff09;**4. **内联处理逻辑**5. **闭包**6. **过滤、映射等函数式编程风格**7. **测试中的临时逻辑**8. **短期存在的逻辑操作**总结 匿名函数在 Go 语言中的使…...

JuiceFS 在多云架构中加速大模型推理

在大模型的开发与应用中&#xff0c;数据预处理、模型开发、训练和推理构成四个关键环节。本文将重点探讨推理环节。在之前的博客中&#xff0c;社区用户 BentoML 和贝壳的案例提到了使用 JuiceFS 社区版来提高模型加载的效率。本文将结合我们的实际经验&#xff0c;详细介绍企…...

【DCL】Dual Contrastive Learning for General Face Forgery Detection

文章目录 Dual Contrastive Learning for General Face Forgery Detectionkey points:贡献方法数据视图生成对比学习架构实例间对比学习实例内对比学习总损失函数实验实验细节定量结果跨数据集评估跨操作评估消融实验可视化Dual Contrastive Learning for General Face Forgery…...

https的特点

https的特点 优点&#xff1a;缺点&#xff1a;HTTPS是如何保证安全的&#xff1f; 优点&#xff1a; 使用HTTPS协议可以认证用户和服务器&#xff0c;确保数据发送到正确的客户端和服务器&#xff1b;使用HTTPS协议可以进行加密传输、身份认证&#xff0c;通信更加安全、防止…...

〖open-mmlab: MMDetection〗解析文件:mmdet/models/losses/cross_entropy_loss.py

目录 深入解析MMDetection中的CrossEntropyLoss及其应用1. 概述2. 核心函数2.1 cross_entropy2.1.1 函数定义和参数说明2.1.2 函数体2.1.3 总结 2.2 binary_cross_entropy2.2.1 _expand_onehot_labels函数2.2.2 binary_cross_entropy函数2.2.3 总结 2.3 mask_cross_entropy2.3.…...

【PyTorch单点知识】torch.nn.Embedding模块介绍:理解词向量与实现

文章目录 0. 前言1. 基础介绍1.1 基本参数1.2 可选参数1.3 属性1.4 PyTorch源码注释 2. 实例演示3. embedding_dim的合理设定4. 结论 0. 前言 按照国际惯例&#xff0c;首先声明&#xff1a;本文只是我自己学习的理解&#xff0c;虽然参考了他人的宝贵见解及成果&#xff0c;但…...

Jedis 操作 Redis 数据结构全攻略

Jedis 操作 Redis 数据结构全攻略 一 . 认识 RESP二 . 前置操作2.1 创建项目2.2 关于开放 Redis 端口的问题2.2.1 端口转发?2.2.2 端口配置 2.3 连接到 Redis 服务器 三 . 通用命令3.1 set 和 get3.2 exists 和 del3.3 keys3.4 expire、ttl、type 三 . string 相关命令3.1 mse…...

ctf.show靶场ssrf攻略

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 web351 解析:post传入url参数他就会访问。 解法: hackbar传入url参数写入https://127.0.0.1/flag.php web352 解析:post传入url参数&#xff0c;不能是127.0.0.1和localhost 解法:缩写127.1传入 web353 解析…...

在 PyTorch 中,如何使用 `pack_padded_sequence` 来提高模型训练的效率?

在PyTorch中&#xff0c;pack_padded_sequence 是一个非常有用的函数&#xff0c;它可以用来提高模型训练的效率&#xff0c;特别是在处理变长序列数据时。这个函数的主要作用是将填充后的序列数据打包&#xff0c;以便循环神经网络&#xff08;RNN&#xff09;可以更高效地处理…...

Gossip协议

主要用在Redis Cluster 节点间通信 Gossip协议&#xff0c;也称为流行病协议&#xff08;Epidemic Protocol&#xff09;&#xff0c;是一种在分布式系统中用于信息传播和故障探测的算法。 一、工作原理 随机选择传播对象 每个节点会定期随机选择一些其他节点作为传播对象。这…...

数据结构————双向链表

内存泄漏&#xff1a; 内存泄漏&#xff08;Memory Leak&#xff09;是指程序中已动态分配的内存由于某种原因程序未释放或无法释放&#xff0c;导致系统内存的浪费&#xff0c;严重时会导致程序运行缓慢甚至崩溃。这种情况在长时间运行的程序或大型系统中尤为常见&#xff0c…...

55 - I. 二叉树的深度

comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9855%20-%20I.%20%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E6%B7%B1%E5%BA%A6/README.md 面试题 55 - I. 二叉树的深度 题目描述 输入一棵二叉树的根节点…...

Redis——初识Redis

初识Redis Redis认识Redis 分布式系统单机架构为什么要引入分布式理解负载均衡数据库的读写分离引入主从数据库 引入缓存数据库分库分表业务拆分——微服务常见概念了解 Redis背景介绍特性应用场景Redis不能做的事情Redis客户端redis客户端的多种形态 Redis 认识Redis 存储数…...

Xshell or Xftp提示“要继续使用此程序,您必须应用最新的更新或使用新版本”

Xshell提示“要继续使用此程序,您必须应用最新的更新或使用新版本”&#xff0c;笔者版本是xshell 6 方法一&#xff1a;更改系统时间 对于Windows 10用户&#xff0c;首先找到系统日期&#xff0c;右键点击并选择“调整时间/日期”。将日期设定为上一年。完成调整后&#x…...

table用position: sticky固定多层表头,滑动滚动条border边框透明解决方法

问题&#xff1a;我发现&#xff0c;这个上下滑动有内容经过就会出现如图的情况。 解决的方法&#xff1a;用outline&#xff08;轮廓&#xff09;替代border,以达到我们想要的样式。 outline主要是在元素边框的外围设置轮廓&#xff0c;outline不占据空间&#xff0c;绘制于…...

基于飞桨paddle2.6.1+cuda11.7+paddleRS开发版的目标提取-道路数据集训练和预测代码

基于飞桨paddle2.6.1cuda11.7paddleRS开发版的目标提取-道路数据集训练和预测代码 预测结果&#xff1a; 预测影像&#xff1a; &#xff08;一&#xff09;准备道路数据集 下载数据集地址&#xff1a; https://aistudio.baidu.com/datasetdetail/56961 mass_road.zip …...

数学建模笔记—— 整数规划和0-1规划

数学建模笔记—— 整数规划和0-1规划 整数规划和0-1规划1. 模型原理1.1 基本概念1.2 线性整数规划求解1.3 线性0-1规划的求解 2. 典型例题2.1 背包问题2.2 指派问题 3. matlab代码实现3.1 背包问题3.2 指派问题 整数规划和0-1规划 1. 模型原理 1.1 基本概念 在规划问题中&am…...

[001-03-007].第26节:分布式锁迭代3->优化基于setnx命令实现的分布式锁-防锁的误删

我的博客大纲 我的后端学习大纲 1、问题分析&#xff1a; 1.1.问题&#xff1a; 1.锁的超时释放&#xff0c;可能会释放其他服务器的锁 1.2.场景&#xff1a; 1.如果业务逻辑的执行时间是7s。执行流程如下 1.index1业务逻辑没执行完&#xff0c;3秒后锁被自动释放。2.index…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...