redisson中的分布式锁
我的博客大纲
我的后端学习大纲
a.redisson概述:
- 1.
Redisson
是一个在Redis的基础上实现的Java驻内存数据网格
(In-Memory Data Grid) - 2.redisson介绍官方文档地址:
- 3.
Redisson
它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务- 包括(
BitSet, Set, Multimap, SortedSet, Map, List, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, AtomicLong, CountDownLatch, Publish / Subscribe, Bloom filter, Remote service, Spring cache, Executor service, Live Object service, Scheduler service
) - Redisson提供了使用Redis的最简单和最便捷的方法。
- Redisson的宗旨是
促进使用者对Redis的关注分离(Separation of Concern)
,从而让使用者能够将精力更集中地放在处理业务逻辑上。
- 包括(
b.各分布式锁介绍:
b1.可重入锁(Reentrant Lock)
b1-1.概述:
- 1.基于Redis的Redisson分布式可重入锁
RLock
Java对象实现了java.util.concurrent.locks.Lock
接口。 - 2.如果负责储存这个分布式锁的Redisson节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。为了避免这种情况的发生,
Redisson内部提供了一个监控锁的看门狗
,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期
。 - 3.默认情况下,看门狗检查锁的超时时间是30秒钟,也可以通过修改
Config.lockWatchdogTimeout
来另行指定。 - 4.
RLock
对象完全符合Java的Lock规范。也就是说只有拥有锁的进程才能解锁,其他进程解锁则会抛出IllegalMonitorStateException
错误。 - 5.另外Redisson还通过加锁的方法提供了
leaseTime
的参数来指定加锁的时间。超过这个时间后锁便自动解开了。
RLock lock = redisson.getLock("anyLock");
// 最常见的使用方法
lock.lock();// 加锁以后10秒钟自动解锁
// 无需调用unlock方法手动解锁
lock.lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS);
if (res) {try {...} finally {lock.unlock();}
}
b1-2.编码实现:
- 1.引入依赖
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.11.2</version>
</dependency>
- 2.添加配置
@Configuration
public class RedissonConfig {@Beanpublic RedissonClient redissonClient(){Config config = new Config();// 可以用"rediss://"来启用SSL连接config.useSingleServer().setAddress("redis://172.16.116.100:6379");return Redisson.create(config);}
}
- 3.代码中使用
@Autowired
private RedissonClient redissonClient;public void checkAndLock() {// 加锁,获取锁失败重试RLock lock = this.redissonClient.getLock("lock");lock.lock();// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){stock.setCount(stock.getCount() - 1);this.stockMapper.updateById(stock);}// 释放锁lock.unlock();
}
- 4.压力测试:性能跟我们手写的区别不大。
- 5.数据库也没有问题
b2. 公平锁(Fair Lock)
- 1.基于Redis的Redisson分布式可重入公平锁也是实现了
java.util.concurrent.locks.Lock
接口的一种RLock
对象。 - 2.同时还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
- 3.它保证了当多个Redisson客户端线程同时请求加锁时,优先分配给先发出请求的线程。
- 4.所有请求线程会在一个队列中排队,当某个线程出现宕机时,Redisson会等待5秒后继续下一个线程,也就是说如果前面有5个线程都处于等待状态,那么后面的线程会等待至少25秒。
RLock fairLock = redisson.getFairLock("anyLock");
// 最常见的使用方法
fairLock.lock();// 10秒钟以后自动解锁
// 无需调用unlock方法手动解锁
fairLock.lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = fairLock.tryLock(100, 10, TimeUnit.SECONDS);
fairLock.unlock();
b3. 联锁(MultiLock)
- 1.基于Redis的Redisson分布式联锁
RedissonMultiLock
对象可以将多个RLock
对象关联为一个联锁,每个RLock
对象实例可以来自于不同的Redisson实例。
RLock lock1 = redissonInstance1.getLock("lock1");
RLock lock2 = redissonInstance2.getLock("lock2");
RLock lock3 = redissonInstance3.getLock("lock3");RedissonMultiLock lock = new RedissonMultiLock(lock1, lock2, lock3);
// 同时加锁:lock1 lock2 lock3
// 所有的锁都上锁成功才算成功。
lock.lock();
...
lock.unlock();
b4. 红锁(RedLock)
- 1.基于Redis的Redisson红锁
RedissonRedLock
对象实现了Redlock介绍的加锁算法。 - 2.该对象也可以用来将多个
RLock
对象关联为一个红锁,每个RLock
对象实例可以来自于不同的Redisson实例。
RLock lock1 = redissonInstance1.getLock("lock1");
RLock lock2 = redissonInstance2.getLock("lock2");
RLock lock3 = redissonInstance3.getLock("lock3");
RedissonRedLock lock = new RedissonRedLock(lock1, lock2, lock3);
// 同时加锁:lock1 lock2 lock3
// 红锁在大部分节点上加锁成功就算成功。
lock.lock();
...
lock.unlock();
b5. 读写锁(ReadWriteLock)
b5-1.概述:
- 1.基于Redis的Redisson分布式可重入读写锁
RReadWriteLock
Java对象实现了java.util.concurrent.locks.ReadWriteLock
接口。 - 2.其中读锁和写锁都继承了RLock接口。
- 3.分布式可重入读写锁允许同时有多个读锁和一个写锁处于加锁状态。
b5-2.编码实现:
RReadWriteLock rwlock = redisson.getReadWriteLock("anyRWLock");
// 最常见的使用方法
rwlock.readLock().lock();
// 或
rwlock.writeLock().lock();
// 10秒钟以后自动解锁
// 无需调用unlock方法手动解锁
rwlock.readLock().lock(10, TimeUnit.SECONDS);
// 或
rwlock.writeLock().lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = rwlock.readLock().tryLock(100, 10, TimeUnit.SECONDS);
// 或
boolean res = rwlock.writeLock().tryLock(100, 10, TimeUnit.SECONDS);
...
lock.unlock();
添加StockController方法:
@GetMapping("test/read")
public String testRead(){String msg = stockService.testRead();return "测试读";
}@GetMapping("test/write")
public String testWrite(){String msg = stockService.testWrite();return "测试写";
}
添加StockService方法:
public String testRead() {RReadWriteLock rwLock = this.redissonClient.getReadWriteLock("rwLock");rwLock.readLock().lock(10, TimeUnit.SECONDS);System.out.println("测试读锁。。。。");// rwLock.readLock().unlock();return null;
}public String testWrite() {RReadWriteLock rwLock = this.redissonClient.getReadWriteLock("rwLock");rwLock.writeLock().lock(10, TimeUnit.SECONDS);System.out.println("测试写锁。。。。");// rwLock.writeLock().unlock();return null;
}
b5-3.测试
- 1.打开开两个浏览器窗口测试:
- 同时访问写:一个写完之后,等待一会儿(约10s),另一个写开始
- 同时访问读:不用等待
- 先写后读:读要等待(约10s)写完成
- 先读后写:写要等待(约10s)读完成
b6. 信号量(Semaphore)
- 1.基于Redis的Redisson的分布式信号量(Semaphore)Java对象
RSemaphore
采用了与java.util.concurrent.Semaphore
相似的接口和用法。 - 2.同时还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RSemaphore semaphore = redisson.getSemaphore("semaphore");
semaphore.trySetPermits(3);
semaphore.acquire();
semaphore.release();
- 3.在StockController添加方法:
@GetMapping("test/semaphore")
public String testSemaphore(){this.stockService.testSemaphore();return "测试信号量";
}
- 4.在StockService添加方法:
public void testSemaphore() {RSemaphore semaphore = this.redissonClient.getSemaphore("semaphore");semaphore.trySetPermits(3);try {semaphore.acquire();TimeUnit.SECONDS.sleep(5);System.out.println(System.currentTimeMillis());semaphore.release();} catch (InterruptedException e) {e.printStackTrace();}
}
- 5.添加测试用例:并发10次,循环一次:
- 6.控制台效果:
控制台1:
1606960790234
1606960800337
1606960800443
1606960805248控制台2:
1606960790328
1606960795332
1606960800245控制台3:
1606960790433
1606960795238
1606960795437
- 7.由此可知:
1606960790秒有3次请求进来:每个控制台各1次
1606960795秒有3次请求进来:控制台2有1次,控制台3有2次
1606960800秒有3次请求进来:控制台1有2次,控制台2有1次
1606960805秒有1次请求进来:控制台1有1次
b7. 闭锁(CountDownLatch)
- 1.基于Redisson的Redisson分布式闭锁(CountDownLatch)Java对象
RCountDownLatch
采用了与java.util.concurrent.CountDownLatch
相似的接口和用法。
RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch");
latch.trySetCount(1);
latch.await();// 在其他线程或其他JVM里
RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch");
latch.countDown();
- 2.需要两个方法:
- 一个等待
- 一个计数countDown给StockController添加测试方法:
@GetMapping("test/latch")
public String testLatch(){this.stockService.testLatch();return "班长锁门。。。";
}
@GetMapping("test/countdown")
public String testCountDown(){this.stockService.testCountDown();return "出来了一位同学";
}
- 3.给StockService添加测试方法:
public void testLatch() {RCountDownLatch latch = this.redissonClient.getCountDownLatch("latch");latch.trySetCount(6);try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}
}public void testCountDown() {RCountDownLatch latch = this.redissonClient.getCountDownLatch("latch");latch.trySetCount(6);latch.countDown();
}
重启测试,打开两个页面:当第二个请求执行6次之后,第一个请求才会执行。
相关文章:

redisson中的分布式锁
我的博客大纲 我的后端学习大纲 a.redisson概述: 1.Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)2.redisson介绍官方文档地址:3.Redisson它不仅提供了一系列的分布式的Java常用对象,还…...

如何将镜像推送到docker hub
前言 这一篇应该是最近最后一篇关于docker的博客了,咱来个有始有终,将最后一步——上传镜像给他写完,废话不多说,直接进入正题。 登录 首先需要确保登录才能推送到你的仓库中去,在终端输入docker login,输入用户名和…...
GO 匿名函数
GO 匿名函数 文章目录 GO 匿名函数1. **回调函数**2. **goroutine 中的操作**3. **延迟操作(defer)**4. **内联处理逻辑**5. **闭包**6. **过滤、映射等函数式编程风格**7. **测试中的临时逻辑**8. **短期存在的逻辑操作**总结 匿名函数在 Go 语言中的使…...

JuiceFS 在多云架构中加速大模型推理
在大模型的开发与应用中,数据预处理、模型开发、训练和推理构成四个关键环节。本文将重点探讨推理环节。在之前的博客中,社区用户 BentoML 和贝壳的案例提到了使用 JuiceFS 社区版来提高模型加载的效率。本文将结合我们的实际经验,详细介绍企…...

【DCL】Dual Contrastive Learning for General Face Forgery Detection
文章目录 Dual Contrastive Learning for General Face Forgery Detectionkey points:贡献方法数据视图生成对比学习架构实例间对比学习实例内对比学习总损失函数实验实验细节定量结果跨数据集评估跨操作评估消融实验可视化Dual Contrastive Learning for General Face Forgery…...
https的特点
https的特点 优点:缺点:HTTPS是如何保证安全的? 优点: 使用HTTPS协议可以认证用户和服务器,确保数据发送到正确的客户端和服务器;使用HTTPS协议可以进行加密传输、身份认证,通信更加安全、防止…...
〖open-mmlab: MMDetection〗解析文件:mmdet/models/losses/cross_entropy_loss.py
目录 深入解析MMDetection中的CrossEntropyLoss及其应用1. 概述2. 核心函数2.1 cross_entropy2.1.1 函数定义和参数说明2.1.2 函数体2.1.3 总结 2.2 binary_cross_entropy2.2.1 _expand_onehot_labels函数2.2.2 binary_cross_entropy函数2.2.3 总结 2.3 mask_cross_entropy2.3.…...
【PyTorch单点知识】torch.nn.Embedding模块介绍:理解词向量与实现
文章目录 0. 前言1. 基础介绍1.1 基本参数1.2 可选参数1.3 属性1.4 PyTorch源码注释 2. 实例演示3. embedding_dim的合理设定4. 结论 0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但…...

Jedis 操作 Redis 数据结构全攻略
Jedis 操作 Redis 数据结构全攻略 一 . 认识 RESP二 . 前置操作2.1 创建项目2.2 关于开放 Redis 端口的问题2.2.1 端口转发?2.2.2 端口配置 2.3 连接到 Redis 服务器 三 . 通用命令3.1 set 和 get3.2 exists 和 del3.3 keys3.4 expire、ttl、type 三 . string 相关命令3.1 mse…...

ctf.show靶场ssrf攻略
前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 web351 解析:post传入url参数他就会访问。 解法: hackbar传入url参数写入https://127.0.0.1/flag.php web352 解析:post传入url参数,不能是127.0.0.1和localhost 解法:缩写127.1传入 web353 解析…...
在 PyTorch 中,如何使用 `pack_padded_sequence` 来提高模型训练的效率?
在PyTorch中,pack_padded_sequence 是一个非常有用的函数,它可以用来提高模型训练的效率,特别是在处理变长序列数据时。这个函数的主要作用是将填充后的序列数据打包,以便循环神经网络(RNN)可以更高效地处理…...
Gossip协议
主要用在Redis Cluster 节点间通信 Gossip协议,也称为流行病协议(Epidemic Protocol),是一种在分布式系统中用于信息传播和故障探测的算法。 一、工作原理 随机选择传播对象 每个节点会定期随机选择一些其他节点作为传播对象。这…...
数据结构————双向链表
内存泄漏: 内存泄漏(Memory Leak)是指程序中已动态分配的内存由于某种原因程序未释放或无法释放,导致系统内存的浪费,严重时会导致程序运行缓慢甚至崩溃。这种情况在长时间运行的程序或大型系统中尤为常见,…...
55 - I. 二叉树的深度
comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9855%20-%20I.%20%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E6%B7%B1%E5%BA%A6/README.md 面试题 55 - I. 二叉树的深度 题目描述 输入一棵二叉树的根节点…...

Redis——初识Redis
初识Redis Redis认识Redis 分布式系统单机架构为什么要引入分布式理解负载均衡数据库的读写分离引入主从数据库 引入缓存数据库分库分表业务拆分——微服务常见概念了解 Redis背景介绍特性应用场景Redis不能做的事情Redis客户端redis客户端的多种形态 Redis 认识Redis 存储数…...

Xshell or Xftp提示“要继续使用此程序,您必须应用最新的更新或使用新版本”
Xshell提示“要继续使用此程序,您必须应用最新的更新或使用新版本”,笔者版本是xshell 6 方法一:更改系统时间 对于Windows 10用户,首先找到系统日期,右键点击并选择“调整时间/日期”。将日期设定为上一年。完成调整后&#x…...

table用position: sticky固定多层表头,滑动滚动条border边框透明解决方法
问题:我发现,这个上下滑动有内容经过就会出现如图的情况。 解决的方法:用outline(轮廓)替代border,以达到我们想要的样式。 outline主要是在元素边框的外围设置轮廓,outline不占据空间,绘制于…...

基于飞桨paddle2.6.1+cuda11.7+paddleRS开发版的目标提取-道路数据集训练和预测代码
基于飞桨paddle2.6.1cuda11.7paddleRS开发版的目标提取-道路数据集训练和预测代码 预测结果: 预测影像: (一)准备道路数据集 下载数据集地址: https://aistudio.baidu.com/datasetdetail/56961 mass_road.zip …...
数学建模笔记—— 整数规划和0-1规划
数学建模笔记—— 整数规划和0-1规划 整数规划和0-1规划1. 模型原理1.1 基本概念1.2 线性整数规划求解1.3 线性0-1规划的求解 2. 典型例题2.1 背包问题2.2 指派问题 3. matlab代码实现3.1 背包问题3.2 指派问题 整数规划和0-1规划 1. 模型原理 1.1 基本概念 在规划问题中&am…...

[001-03-007].第26节:分布式锁迭代3->优化基于setnx命令实现的分布式锁-防锁的误删
我的博客大纲 我的后端学习大纲 1、问题分析: 1.1.问题: 1.锁的超时释放,可能会释放其他服务器的锁 1.2.场景: 1.如果业务逻辑的执行时间是7s。执行流程如下 1.index1业务逻辑没执行完,3秒后锁被自动释放。2.index…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...