当前位置: 首页 > news >正文

使用 ShuffleNet 模型在 CIFAR-100 数据集上的图像分类

简介

在深度学习领域,图像分类任务是衡量算法性能的重要基准。本文将介绍我们如何使用一种高效的卷积神经网络架构——ShuffleNet,来处理 CIFAR-100 数据集上的图像分类问题。

CIFAR-100 数据集简介

CIFAR-100 数据集是一个广泛使用的图像分类数据集,它由 60,000 张 32x32 像素的彩色图像组成,涵盖了 100 个不同的类别。每个类别包含 600 张图像,其中 500 张用于训练,100 张用于测试。与 CIFAR-10 相比,CIFAR-100 的类别更多,每个类别的图像数量更少,这使得分类任务更具挑战性。

数据集的图像涵盖了多种物体、动物和场景,例如汽车、鸟类、植物等。CIFAR-100 的多样性和复杂性使其成为评估图像识别算法性能的重要基准。

ShuffleNet 模型介绍

ShuffleNet 是一种轻量级的卷积神经网络架构,专为移动和嵌入式设备设计。它通过减少计算量和参数数量,实现了高效的图像识别性能。

核心特性

  • 通道混洗(Channel Shuffle):ShuffleNet通过通道混洗操作,有效提高了组卷积网络的性能。通道混洗通过重新排列通道,打破数据的相关性,增强了模型的学习能力。
  • 组卷积(Grouped Convolution):通过将输入和输出通道分组,每组独立进行卷积运算,减少了模型的计算量。
  • 轻量化设计:ShuffleNet 通过减少卷积层的数量和使用深度可分离卷积等技术,实现了轻量化设计,适合在资源受限的设备上运行。

模型结构

在本项目中,我们实现了两种不同配置的 ShuffleNet 模型:ShuffleNetG2 和 ShuffleNetG3。这两种模型的主要区别在于输出通道数和组的数量,以适应不同的计算资源需求。

def ShuffleNetG2():cfg = {'out_channels': [200,400,800],'num_blocks': [4,8,4],'groups': 2}return ShuffleNet(cfg)def ShuffleNetG3():cfg = {'out_channels': [240,480,960],'num_blocks': [4,8,4],'groups': 3}return ShuffleNet(cfg)

实验结果

通过在 CIFAR-100 数据集上的训练和测试,我们的 ShuffleNet 模型展示了良好的分类性能。模型在训练过程中准确率逐渐提高,损失逐渐降低。虽然目前模型的准确率仅为55%,但通过调整一些关键参数,我相信你们有能力进一步提升模型的性能。


在这里插入图片描述

完整代码

在资源里,使用 ShuffleNet 模型在 CIFAR-100 数据集上的图像分类.html

结论

ShuffleNet 是一种高效的图像分类模型,特别适合在资源受限的设备上运行。通过通道混洗和组卷积技术,ShuffleNet 在保持高性能的同时,显著减少了计算量。在 CIFAR-100 数据集上的实验结果表明,ShuffleNet 是一个强大的轻量级图像识别工具。

希望这篇文章能帮助读者更好地理解 CIFAR-100 数据集和 ShuffleNet 模型,并为图像分类任务提供有价值的参考。

相关文章:

使用 ShuffleNet 模型在 CIFAR-100 数据集上的图像分类

简介 在深度学习领域,图像分类任务是衡量算法性能的重要基准。本文将介绍我们如何使用一种高效的卷积神经网络架构——ShuffleNet,来处理 CIFAR-100 数据集上的图像分类问题。 CIFAR-100 数据集简介 CIFAR-100 数据集是一个广泛使用的图像分类数据集&…...

怎么利用短信接口发送文字短信

在当今这个快节奏的数字时代,即时通讯已成为人们日常生活和工作中不可或缺的一部分。而短信接口(SMS Interface),作为传统与现代通讯技术结合的典范,凭借其高效、稳定、广泛覆盖的特性,在众多领域发挥着不可…...

【C#生态园】提升C#开发效率:掌握这六款单元测试利器

从xUnit到SpecFlow:C#测试驱动开发全指南 前言 在C#开发中,单元测试和模拟框架是至关重要的工具,它们可以帮助开发人员确保代码的质量和可靠性。本文将介绍一些常用的C#单元测试框架和相关库,包括xUnit、NUnit、Moq、FluentAsse…...

【QT】自制一个简单的小闹钟,能够实现语音播报功能

做了一个自制的小闹钟,能够自己输入时间,以及对应的闹铃,时间到了自动播放设定的闹铃,可以随时取消重新设定,采用分文件编译 注意:需要在.pro文件中加入:QT core gui texttospeech 代码…...

基于深度学习的图像描述生成

基于深度学习的图像描述生成(Image Captioning)是一种将计算机视觉与自然语言处理结合的任务,其目标是通过自动生成自然语言来描述输入的图像。该技术能够理解图像中的视觉内容,并生成相应的文本描述,广泛应用于视觉问…...

Linux和C语言(Day11)

一、学习内容 讲解有参函数 形参 和 实参 形参——定义时的参数,形式上的参数,没有实际意义,语法上必须带有数据类型 void fun(int a,int b); void fun(int a[],int n); void fun(char *s); 可以是:变量、数组、指针 实参——调用…...

使用Zlib库进行多文件或者多文件夹的压缩解压缩

zlib库可在git上自己clone下来然后使用cmake工具生成解决方案,编译、生成zlib二进制文件。然后将zlib库引入项目: //zlib库支持 #include "../zlib/include/zlib.h" #ifdef _DEBUG #pragma comment(lib, "../zlib/lib/zlibd.lib") …...

CSGHub携手Nvidia NIM、阿里计算巢打造企业级私有化部署解决方案

强强联合 人工智能与大数据的迅速发展,大模型的推理应用和资产管理已成为企业数字化转型的重要组成部分,企业正寻求高效、安全的AI模型部署解决方案。为应对日益增长的计算需求和复杂的数据管理挑战,CSGHub、Nvidia和阿里云计算巢强强联手&a…...

opencv的球面投影

cv::detail::SphericalProjector 在全景图像拼接任务中,可能需要对多个图像进行球面投影以实现无缝拼接。每个cv::detail::SphericalProjector可以负责一个图像的球面投影操作。通过将多个这样的投影器存储在std::vector中,可以对一组图像依次进行投影处…...

5. 去中心化应用(dApp)

去中心化应用(dApp) 去中心化应用(dApp)是基于区块链技术构建的应用程序,其核心特性是去中心化、透明和开放。dApp与传统应用有许多显著的区别,它们在实现和功能上都带来了新的变革。以下是对dApp的详细介…...

k8s服务发布Ingress

Kubernetes暴露服务的方式目前只有三种:LoadBlancer Service、NodePort Service、Ingress,通俗来讲,ingress和之前提到的Service、Deployment,也是一个k8s的资源类型,ingress用于实现用域名的方式访问k8s内部应用。 In…...

区块链学习笔记1--比特币

区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。 从狭义上来说:区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学的方式保证的不可篡改和不可伪造的分布式账本。 意思就是…...

在 Vite 项目中自动为每个 Vue 文件导入 base.less

在 Vue.js 项目中,使用 Less 作为 CSS 预处理器时,我们通常会创建一个全局的样式文件(如 base.less),用于存放一些全局变量、混合、通用样式等。为了避免在每个 Vue 组件中手动导入这个文件,我们可以通过配…...

RUST 学习之全局变量

RUST 全局变量 rust 全局变量编译期初始化的全局变量静态常量静态变量原子类型的静态变量 运行期初始化的全局变量lazy_staticBox::leakOnceCell & OnceLock 参考文档 rust 全局变量 编译期初始化的全局变量 静态常量 在编译期初始化,所以其赋值只能是表达式…...

代码随想录八股训练营第三十九天| C++

前言 一、说一下 lambda函数? 1.1.Lambda 函数的一般语法如下: 1.2.捕获子句: 二、C 怎么实现一个单例模式? 2.1.懒汉式(线程不安全): 2.2.饿汉式(线程安全): 2.3.双重检查锁定&#xff…...

服务网关工作原理,如何获取用户真实IP?

文章目录 一、什么是网关二、网关工作原理 (★)三、SpringCloud Gateway3.1 Gateway 简介3.2 Gateway 环境搭建3.3 自定义路由规则 (★)3.4 局部过滤器3.5 全局过滤器(案例:获取用户真实IP地址) (★) 补充1:不同类型的客户端如何设…...

单链表的实现(C语言)

目录 1.单链表 1.1 实现单链表 1.1.1 文件创建 1.1.2 链表功能了解 1.1.3 链表的结点 1.1.4 链表的函数声明 1.1.5 链表功能的实现 链表是一种链式结构,物理结构不连续,逻辑结构是连续的,在计算机中链表的实际存储是按照一个结点内存放…...

sql语句的训练2024/9/9

1题 需要看清思路:不是将数据库中的device_id的名字改为user_infors_example,而是在查找的时候,需要将device_id看成user_infors_example来进行查找。 答案 select device_id AS user_infos_example FROM user_profile limit 2 2 当固定查找…...

【QT】常用控件-下

欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:QT 目录 👉🏻QComboBox👉🏻 QSpinBox👉🏻QDateTimeEdit👉🏻QD…...

828华为云征文|华为云Flexus X实例docker部署Jitsi构建属于自己的音视频会议系统

828华为云征文|华为云Flexus X实例docker部署Jitsi构建属于自己的音视频会议系统 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求&a…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"&#xff0…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

SpringCloudGateway 自定义局部过滤器

场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...