使用 ShuffleNet 模型在 CIFAR-100 数据集上的图像分类
简介
在深度学习领域,图像分类任务是衡量算法性能的重要基准。本文将介绍我们如何使用一种高效的卷积神经网络架构——ShuffleNet,来处理 CIFAR-100 数据集上的图像分类问题。
CIFAR-100 数据集简介
CIFAR-100 数据集是一个广泛使用的图像分类数据集,它由 60,000 张 32x32 像素的彩色图像组成,涵盖了 100 个不同的类别。每个类别包含 600 张图像,其中 500 张用于训练,100 张用于测试。与 CIFAR-10 相比,CIFAR-100 的类别更多,每个类别的图像数量更少,这使得分类任务更具挑战性。
数据集的图像涵盖了多种物体、动物和场景,例如汽车、鸟类、植物等。CIFAR-100 的多样性和复杂性使其成为评估图像识别算法性能的重要基准。
ShuffleNet 模型介绍
ShuffleNet 是一种轻量级的卷积神经网络架构,专为移动和嵌入式设备设计。它通过减少计算量和参数数量,实现了高效的图像识别性能。
核心特性
- 通道混洗(Channel Shuffle):ShuffleNet通过通道混洗操作,有效提高了组卷积网络的性能。通道混洗通过重新排列通道,打破数据的相关性,增强了模型的学习能力。
- 组卷积(Grouped Convolution):通过将输入和输出通道分组,每组独立进行卷积运算,减少了模型的计算量。
- 轻量化设计:ShuffleNet 通过减少卷积层的数量和使用深度可分离卷积等技术,实现了轻量化设计,适合在资源受限的设备上运行。
模型结构
在本项目中,我们实现了两种不同配置的 ShuffleNet 模型:ShuffleNetG2 和 ShuffleNetG3。这两种模型的主要区别在于输出通道数和组的数量,以适应不同的计算资源需求。
def ShuffleNetG2():cfg = {'out_channels': [200,400,800],'num_blocks': [4,8,4],'groups': 2}return ShuffleNet(cfg)def ShuffleNetG3():cfg = {'out_channels': [240,480,960],'num_blocks': [4,8,4],'groups': 3}return ShuffleNet(cfg)
实验结果
通过在 CIFAR-100 数据集上的训练和测试,我们的 ShuffleNet 模型展示了良好的分类性能。模型在训练过程中准确率逐渐提高,损失逐渐降低。虽然目前模型的准确率仅为55%,但通过调整一些关键参数,我相信你们有能力进一步提升模型的性能。
完整代码
在资源里,使用 ShuffleNet 模型在 CIFAR-100 数据集上的图像分类.html
结论
ShuffleNet 是一种高效的图像分类模型,特别适合在资源受限的设备上运行。通过通道混洗和组卷积技术,ShuffleNet 在保持高性能的同时,显著减少了计算量。在 CIFAR-100 数据集上的实验结果表明,ShuffleNet 是一个强大的轻量级图像识别工具。
希望这篇文章能帮助读者更好地理解 CIFAR-100 数据集和 ShuffleNet 模型,并为图像分类任务提供有价值的参考。
相关文章:

使用 ShuffleNet 模型在 CIFAR-100 数据集上的图像分类
简介 在深度学习领域,图像分类任务是衡量算法性能的重要基准。本文将介绍我们如何使用一种高效的卷积神经网络架构——ShuffleNet,来处理 CIFAR-100 数据集上的图像分类问题。 CIFAR-100 数据集简介 CIFAR-100 数据集是一个广泛使用的图像分类数据集&…...

怎么利用短信接口发送文字短信
在当今这个快节奏的数字时代,即时通讯已成为人们日常生活和工作中不可或缺的一部分。而短信接口(SMS Interface),作为传统与现代通讯技术结合的典范,凭借其高效、稳定、广泛覆盖的特性,在众多领域发挥着不可…...

【C#生态园】提升C#开发效率:掌握这六款单元测试利器
从xUnit到SpecFlow:C#测试驱动开发全指南 前言 在C#开发中,单元测试和模拟框架是至关重要的工具,它们可以帮助开发人员确保代码的质量和可靠性。本文将介绍一些常用的C#单元测试框架和相关库,包括xUnit、NUnit、Moq、FluentAsse…...

【QT】自制一个简单的小闹钟,能够实现语音播报功能
做了一个自制的小闹钟,能够自己输入时间,以及对应的闹铃,时间到了自动播放设定的闹铃,可以随时取消重新设定,采用分文件编译 注意:需要在.pro文件中加入:QT core gui texttospeech 代码…...

基于深度学习的图像描述生成
基于深度学习的图像描述生成(Image Captioning)是一种将计算机视觉与自然语言处理结合的任务,其目标是通过自动生成自然语言来描述输入的图像。该技术能够理解图像中的视觉内容,并生成相应的文本描述,广泛应用于视觉问…...

Linux和C语言(Day11)
一、学习内容 讲解有参函数 形参 和 实参 形参——定义时的参数,形式上的参数,没有实际意义,语法上必须带有数据类型 void fun(int a,int b); void fun(int a[],int n); void fun(char *s); 可以是:变量、数组、指针 实参——调用…...

使用Zlib库进行多文件或者多文件夹的压缩解压缩
zlib库可在git上自己clone下来然后使用cmake工具生成解决方案,编译、生成zlib二进制文件。然后将zlib库引入项目: //zlib库支持 #include "../zlib/include/zlib.h" #ifdef _DEBUG #pragma comment(lib, "../zlib/lib/zlibd.lib") …...

CSGHub携手Nvidia NIM、阿里计算巢打造企业级私有化部署解决方案
强强联合 人工智能与大数据的迅速发展,大模型的推理应用和资产管理已成为企业数字化转型的重要组成部分,企业正寻求高效、安全的AI模型部署解决方案。为应对日益增长的计算需求和复杂的数据管理挑战,CSGHub、Nvidia和阿里云计算巢强强联手&a…...

opencv的球面投影
cv::detail::SphericalProjector 在全景图像拼接任务中,可能需要对多个图像进行球面投影以实现无缝拼接。每个cv::detail::SphericalProjector可以负责一个图像的球面投影操作。通过将多个这样的投影器存储在std::vector中,可以对一组图像依次进行投影处…...

5. 去中心化应用(dApp)
去中心化应用(dApp) 去中心化应用(dApp)是基于区块链技术构建的应用程序,其核心特性是去中心化、透明和开放。dApp与传统应用有许多显著的区别,它们在实现和功能上都带来了新的变革。以下是对dApp的详细介…...

k8s服务发布Ingress
Kubernetes暴露服务的方式目前只有三种:LoadBlancer Service、NodePort Service、Ingress,通俗来讲,ingress和之前提到的Service、Deployment,也是一个k8s的资源类型,ingress用于实现用域名的方式访问k8s内部应用。 In…...

区块链学习笔记1--比特币
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。 从狭义上来说:区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学的方式保证的不可篡改和不可伪造的分布式账本。 意思就是…...

在 Vite 项目中自动为每个 Vue 文件导入 base.less
在 Vue.js 项目中,使用 Less 作为 CSS 预处理器时,我们通常会创建一个全局的样式文件(如 base.less),用于存放一些全局变量、混合、通用样式等。为了避免在每个 Vue 组件中手动导入这个文件,我们可以通过配…...

RUST 学习之全局变量
RUST 全局变量 rust 全局变量编译期初始化的全局变量静态常量静态变量原子类型的静态变量 运行期初始化的全局变量lazy_staticBox::leakOnceCell & OnceLock 参考文档 rust 全局变量 编译期初始化的全局变量 静态常量 在编译期初始化,所以其赋值只能是表达式…...

代码随想录八股训练营第三十九天| C++
前言 一、说一下 lambda函数? 1.1.Lambda 函数的一般语法如下: 1.2.捕获子句: 二、C 怎么实现一个单例模式? 2.1.懒汉式(线程不安全): 2.2.饿汉式(线程安全): 2.3.双重检查锁定ÿ…...

服务网关工作原理,如何获取用户真实IP?
文章目录 一、什么是网关二、网关工作原理 (★)三、SpringCloud Gateway3.1 Gateway 简介3.2 Gateway 环境搭建3.3 自定义路由规则 (★)3.4 局部过滤器3.5 全局过滤器(案例:获取用户真实IP地址) (★) 补充1:不同类型的客户端如何设…...

单链表的实现(C语言)
目录 1.单链表 1.1 实现单链表 1.1.1 文件创建 1.1.2 链表功能了解 1.1.3 链表的结点 1.1.4 链表的函数声明 1.1.5 链表功能的实现 链表是一种链式结构,物理结构不连续,逻辑结构是连续的,在计算机中链表的实际存储是按照一个结点内存放…...

sql语句的训练2024/9/9
1题 需要看清思路:不是将数据库中的device_id的名字改为user_infors_example,而是在查找的时候,需要将device_id看成user_infors_example来进行查找。 答案 select device_id AS user_infos_example FROM user_profile limit 2 2 当固定查找…...

【QT】常用控件-下
欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:QT 目录 👉🏻QComboBox👉🏻 QSpinBox👉🏻QDateTimeEdit👉🏻QD…...

828华为云征文|华为云Flexus X实例docker部署Jitsi构建属于自己的音视频会议系统
828华为云征文|华为云Flexus X实例docker部署Jitsi构建属于自己的音视频会议系统 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求&a…...

25虾皮笔试shopee笔试测评sea笔试测评题型
虾皮笔试shopee笔试测评用的自己的笔试系统,全英文笔试: 1.Numerical Reasoning Test:10题,言语推断和数学计算 2. Verbal Reasoning Test:10题,言语理解,每题一段英文材料,选对错…...

启明云端乐鑫代理商,乐鑫ESP32无线芯片方案,物联网设备WiFi联动控制
随着智能和远程技术的飞速发展,物联网(IoT)逐渐出现在我们生活的每一个角落。乐鑫以其创新的无线通信技术,正成为智能家居、工业自动化和医疗设备等领域的推动者。 无线WiFi芯片模组不仅提供了强大的数据处理能力,还赋予了设备以直观的交互方…...

希尔排序/选择排序
前言: 本篇主要对常见的排序算法进行简要分析,代码中均以数组 arr[] { 5, 3, 9, 6, 2, 4, 7, 1, 8 } 为例,进行升序排列。 常见的排序算法有如下: 选择排序中,直接选择排序没有任何实际与教育意义,而堆排…...

漫谈设计模式 [16]:中介者模式
引导性开场 菜鸟:老鸟,我最近在开发一个聊天应用的时候遇到了点问题。每个用户都需要与其他用户直接通信,这让我在代码中写了很多复杂的逻辑来管理这些联系。这样下去,代码越来越难维护了。你有什么建议吗? 老鸟&…...

深度学习-物体检测YOLO(You only look once)
目录 一:YOLO算法的网络结构 流程 1.图像分割 2.图片在网格中的处理 3.非极大值抑制 二:训练 三:分类误差 四:与Faster R-CNN对比 一:YOLO算法的网络结构 GooleNet4个卷积2个全连接层 流程 输入原始图片resize到…...

redisson中的分布式锁
我的博客大纲 我的后端学习大纲 a.redisson概述: 1.Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)2.redisson介绍官方文档地址:3.Redisson它不仅提供了一系列的分布式的Java常用对象,还…...

如何将镜像推送到docker hub
前言 这一篇应该是最近最后一篇关于docker的博客了,咱来个有始有终,将最后一步——上传镜像给他写完,废话不多说,直接进入正题。 登录 首先需要确保登录才能推送到你的仓库中去,在终端输入docker login,输入用户名和…...

GO 匿名函数
GO 匿名函数 文章目录 GO 匿名函数1. **回调函数**2. **goroutine 中的操作**3. **延迟操作(defer)**4. **内联处理逻辑**5. **闭包**6. **过滤、映射等函数式编程风格**7. **测试中的临时逻辑**8. **短期存在的逻辑操作**总结 匿名函数在 Go 语言中的使…...

JuiceFS 在多云架构中加速大模型推理
在大模型的开发与应用中,数据预处理、模型开发、训练和推理构成四个关键环节。本文将重点探讨推理环节。在之前的博客中,社区用户 BentoML 和贝壳的案例提到了使用 JuiceFS 社区版来提高模型加载的效率。本文将结合我们的实际经验,详细介绍企…...

【DCL】Dual Contrastive Learning for General Face Forgery Detection
文章目录 Dual Contrastive Learning for General Face Forgery Detectionkey points:贡献方法数据视图生成对比学习架构实例间对比学习实例内对比学习总损失函数实验实验细节定量结果跨数据集评估跨操作评估消融实验可视化Dual Contrastive Learning for General Face Forgery…...