当前位置: 首页 > news >正文

TQA相关

ReAct Prompting: 原理、实现与应用

ReAct Prompting(推理与行动提示)是一种引导大型语言模型(LLM)进行推理和行动的策略,广泛应用于复杂问题求解、对话生成和自动化任务等领域。ReAct Prompting 通过将模型的思考过程结构化为一系列步骤,使模型能够像人类一样进行推理、执行行动,并根据反馈不断调整,达到更高的任务完成效果。本文将详细讲解 ReAct Prompting 的核心原理、具体步骤、实现方式,以及如何利用其变体 TQA(Think-Question-Answer)来辅助用户故事编写。

ReAct Prompting 的基本原理

ReAct Prompting 的核心思想是将模型的输出过程分为三个部分:思考(Thought)行动(Action)观察(Observation)。在每个步骤中,模型会进行推理思考、选择合适的行动,然后基于观察到的反馈继续调整推理。这种循环可以帮助模型在复杂任务中不断优化自己的输出。

ReAct Prompting 的典型步骤

一个典型的 ReAct Prompting 通常包含以下四个部分:

  1. 上下文提示(Context Prompting):为模型提供解决问题的背景信息。上下文可以帮助模型理解任务的具体场景和需求。

  2. ReAct 步骤(ReAct Steps):包括推理和行动的标准步骤。通常是“思考 - 行动 - 观察(Thought-Action-Observation)”的顺序。

  3. 推理(Reasoning):提示模型根据当前上下文进行思考和推理,例如“让我们一步步思考”或“根据现状进行推理”等。

  4. 行动指令集(Action Instruction Set):为模型提供一组可能的行动选择,使模型能够从中挑选适合当前推理的行动。

ReAct Prompting 模板的细节说明

在 ReAct Prompting 中,模板包含几个关键部分,每个部分都对应特定的业务场景和模型的交互方式:

  1. {context}:表示业务整体的解决方案,涵盖主要的业务背景信息。如果 LLM 提出的问题包含了对基础概念或流程的误解,那么需要重新修改业务背景说明,这就意味着要调整模板中用于表示业务上下文的部分。

  2. {story}:表示当前的用户故事。这个部分定义了当前需要讨论的用户操作场景。如果 LLM 提出的问题包含了对操作的误解,那么需要修改用户故事,即调整模板中表示用户故事的部分。

  3. {history}:表示之前回答过的历史记录,用于跟踪多轮对话中的上下文。如果 LLM 提出的问题仅仅是关于交互细节的,那么我们只需要在会话中回答这些细节,这些信息会被记录在 {history} 部分,供后续参考。

典型 ReAct Prompting 示例

以下是一个标准的 ReAct Prompting 示例,展示了如何在英文和中文环境下分别应用:

英文示例:
Context: You are a software troubleshooting expert assisting a user with installation issues.
ReAct Steps:
1. Thought: Analyze the user's description of the problem.
2. Action: Choose an action based on the analysis.
3. Observation: Adjust your reasoning based on user feedback.Example:
- Thought: User encountered a permission error during installation.
- Action: Suggest running the software as an administrator.
- Observation: User reported the issue persists.
中文示例:
上下文提示:你是软件排障专家,正在帮助用户解决安装问题。
ReAct 步骤:
1. 思考:分析用户描述的问题。
2. 行动:根据分析选择适当的行动。
3. 观察:根据用户反馈调整推理。示例:
- 思考:用户在安装时遇到权限错误。
- 行动:建议用户以管理员身份运行软件。
- 观察:用户反馈问题未解决。

TQA(Think-Question-Answer)在 ReAct Prompting 中的应用

在理解 ReAct Prompting 的推理行动模式后,TQA(想 - 问 - 答)只是其中一种变体,提供了不同的响应步骤。在 TQA 中,模型不仅进行思考(Thought),还会主动提问(Question)来获取更多细节,并利用收到的答案(Answer)来丰富推理过程。TQA 特别适合用于编写用户故事的验收条件。

TQA 示例 Prompt 用于编写用户故事验收条件

以下是 TQA 模板的典型提示词,并附有注释说明每个部分的设计意图:

You are a business analyst who is familiar with specification by example. I’m the domain expert.
// 你是一个熟悉“示例驱动规格说明”的业务分析师,而我是领域专家。===CONTEXT{context}===END OF CONTEXT
// 提供上下文背景信息,帮助模型了解任务的具体场景和需求。
// {context} 表示业务整体的解决方案。如果 LLM 提出的问题包含对基础概念或流程的误解,需要调整这里的业务背景信息。===USER STORY{story}===END OF USER STORY
// 提供当前需要分析的用户故事,作为 ReAct 推理的输入。
// {story} 表示当前的用户故事。如果 LLM 提出的问题包含对操作的误解,需要调整这个部分。Explain the user story as scenarios. Use the following format:
// 使用场景解释用户故事,并遵循下面的格式进行描述。Thought: you should always think about what is still uncertain about the user story. Ignore technical concerns.
// 思考:模型需要思考用户故事中的不清晰部分,不涉及技术细节。Question: the question to ask to clarify the user story
// 问题:提出问题帮助澄清用户故事中的不确定性。Answer: the answer I responded to the question
// 回答:领域专家根据问题给出解答。… (this Thought/Question/Answer repeat at least 3 times, at most 10 times)
// …(思考-问题-回答的循环至少执行 3 次,最多不超过 10 次)Thought: I know enough to explain the user story
// 思考:当模型认为已经了解足够信息时,停止提问。Scenarios: List all possible scenarios with concrete example in Given/When/Then style
// 场景:模型最终将用户故事转化为多个具体的情景,使用 Given/When/Then 格式列出。
{history}{input}
// {history} 表示之前回答的历史记录。如果 LLM 提出的问题仅关于交互细节,可以直接在会话中回答,这些信息会被记入历史记录。

通过 LangChain 实现 ReAct Agent

LangChain 是一个用于将 LLM 集成到复杂应用中的框架,它支持通过定义 Prompt Template、Memory 和 Agent 实现 ReAct 提示词的自动化应用。以下是 ReAct Agent 的核心组件:

  1. Prompt Template:定义 TQA 模板的格式,包括上下文提示、思考指令和行动指令。

  2. Memory:用于存储模型的思考和观察,帮助在多轮对话中积累信息。

  3. Agent:通过调用 LLM 执行 ReAct 步骤,自动完成推理、提问和响应。

LangChain 实现 TQA 的示例代码
from langchain.agents import initialize_agent, Tool
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI# 定义 TQA 模板
tqa_prompt = PromptTemplate(input_variables=["context", "story"],template="""You are a business analyst familiar with specification by example. I’m the domain expert.CONTEXT: {context}END OF CONTEXTUSER STORY: {story}END OF USER STORYExplain the user story as scenarios. Use the following format:Thought: you should always think about what is still uncertain about the user story. Ignore technical concerns.Question: the question to ask to clarify the user story.Answer: the answer I responded to the question.(Repeat the Thought/Question/Answer cycle at least 3 times, but not more than 10 times.)Thought: I know enough to explain the user story.Scenarios: List all possible scenarios with concrete examples in Given/When/Then style."""
)# 定义 LLM
llm = OpenAI(model="text-davinci-003")# 初始化 ReAct Agent
react_agent = initialize_agent(tools=[Tool(prompt=tqa_prompt, llm=llm)],agent_type="react"
)# 提供上下文和用户故事
context = "This is the business context explaining core concepts."
story = "User wants to be able to reset their password via email."# 执行 ReAct Agent
output = react_agent.run(context=context, story=story)
print(output)

TQA 实现的策略分析

  • 引导模型思考与提问:通过上下文提示引导模型识别不确定性,并进行结构化提问。每次的提问和回答循环帮助逐步

澄清用户故事中的细节。

  • 关注业务逻辑:在推理时忽略技术问题,确保输出的内容始终围绕业务逻辑展开。
  • 自动生成验收场景:最终,TQA 的输出会将用户故事转换为多个验收条件,提供清晰、具体的场景描述。

结论

ReAct Prompting 与 TQA 模板为 LLM 的推理与行动提供了一套明确的框架,使其能够在复杂任务中更好地理解上下文,自动生成高质量的用户故事验收条件。这种方法不仅提高了 LLM 的交互质量,也为业务分析、测试设计等场景提供了强有力的支持。通过 LangChain 等工具的集成,ReAct Prompting 可以方便地应用于各类自动化任务中,为用户带来显著的效率提升。

相关文章:

TQA相关

ReAct Prompting: 原理、实现与应用 ReAct Prompting(推理与行动提示)是一种引导大型语言模型(LLM)进行推理和行动的策略,广泛应用于复杂问题求解、对话生成和自动化任务等领域。ReAct Prompting 通过将模型的思考过程…...

Spring Cloud之二 微服务注册

1&#xff1a;Intellij 新建服务 user-service 2&#xff1a;pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"…...

[Web安全 网络安全]-文件上传漏洞

文章目录&#xff1a; 一&#xff1a;前言 1.什么是文件上传漏洞 2.环境 2.1 靶场 2.2 其他工具 3.木马分类 二&#xff1a;文件上传分类 1.客户端 JS绕过 2.服务端-黑名单 大小写绕过 点和空格绕过 .htaccess文件绕过 php345文件绕过 windows ::$DATA绕过 3.…...

【白话Redis】缓存雪崩、穿透、击穿、失效和热点缓存重建

快速导航 Redis不可不知的故障现象一、缓存雪崩定义&#xff1a;解决方案&#xff1a; 二、缓存穿透定义&#xff1a;解决方案一&#xff1a;解决方案二&#xff08;更普遍的做法&#xff09;&#xff1a; 三、缓存击穿定义&#xff1a;解决方案&#xff1a; 四、缓存失效Redis…...

flink增量检查点降低状态依赖实现的详细步骤

增量检查点启动恢复的时间是很久的&#xff0c;业务上不能接受&#xff0c;所以可以通过降低状态依赖来减少恢复的时间。 降低状态依赖 尽可能减少状态的复杂性和依赖关系&#xff0c;通过拆分状态或将状态外部化到其他服务中&#xff0c;从而降低恢复的开销。 实施措施&…...

Redis总结,是什么,干什么,怎么利用?

Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的内存数据库&#xff0c;遵守 BSD 协议&#xff0c;它提供了一个高性能的键值&#xff08;key-value&#xff09;存储系统&#xff0c;常用于缓存、消息队列、会话存储等应用场景 Redis主要特性 &#xff08…...

Vue3状态管理Pinia

Vue3 的 Pinia 使用指南 Pinia 是 Vue3 中官方推荐的状态管理库&#xff0c;作为 Vuex 的替代品&#xff0c;它更简洁易用&#xff0c;并且支持模块化、类型推断和 DevTools 集成。Pinia 非常适合在 Vue3 项目中管理全局状态。 1. 安装 Pinia 首先&#xff0c;我们需要在 Vu…...

box64 安装

ARM运行x86程序 docker安装 box64 安装方法 docker run --name a001 -itd --networkhost -v /www/wwwroot/docker/Box64/f:/f ubuntu:22.04 /bin/bash docker exec -it a001 bash cd /home //创建目录qq547176052 mkdir -p qq547176052 cd /home/qq547176052 apt update apt …...

OpenCV通过鼠标提前ROI(C++实现)

文章目录 鼠标绘制矩形提取ROI任意形状绘制提前ROI 废话不多说&#xff0c;直接上代码 鼠标绘制矩形提取ROI #include <iostream> #include <opencv2\opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/core/core.hpp>us…...

6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)

目录 一.堆(Heap)的基本介绍 二.堆的常用操作&#xff08;以小根堆为例&#xff09; 三.实现代码 3.1 堆结构定义 3.2 向下调整算法* 3.3 初始化堆* 3.4 销毁堆 3.4 向上调整算法* 3.5 插入数据 3.6 删除数据 3.7 返回堆顶数据 四.下篇内容 1.堆排序 2.TopK问题 一…...

【智能终端】HBuilder X 与微信开发者工具集成与调试实战

目录 1. 需求和理解库、框架、平台 1.1 需求 1.2 理解 2.3 库、框架、平台 2.3.1 库&#xff08;Library&#xff09; 2.3.2 框架&#xff08;Framework&#xff09; 2.3.3 平台&#xff08;Platform&#xff09; 2.3.4 总结 2. 使用 HBuilder X 创建第一个 uni-app 应…...

结构体的字节对齐方式(__attribute_pack(packed))#pragma pack())

结构体的字节对齐方式&#xff08;__attribute_pack(packed))&#pragma pack()) 1、编译器的字节对齐方式 当前编译器都有默认的字节对齐方式&#xff0c; struct PackedStruct {char a;int b;short c; };如上代码段中的结构体&#xff0c;在编译运行后发现他的大小并不…...

若依Ruoyi之智能售货机运营管理系统(新增运营运维工单管理)

idea抽取独立方法快捷键&#xff1a;ctrlaltm TaskDto.java package com.dkd.manage.service.impl;import java.time.Duration; import java.util.List; import java.util.stream.Collectors;import cn.hutool.core.bean.BeanUtil; import cn.hutool.core.collection.CollUti…...

ModuleNotFoundError: No module named ‘keras.layers.core‘怎么解决

问题 ModuleNotFoundError: No module named keras.layers.core&#xff0c;如图所示&#xff1a; 如何解决 将from keras.layers.core import Dense,Activation改为from tensorflow.keras.layers import Dense,Activation&#xff0c;如图所示&#xff1a; 顺利运行&#xf…...

C++(三)----内存管理

1.C/C内存分布 看下面这个问题&#xff08;考考你们之前学的咋样&#xff09;&#xff1a; int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] {1, 2, 3, 4};char char2[] "abcd";char* pCh…...

使用 ShuffleNet 模型在 CIFAR-100 数据集上的图像分类

简介 在深度学习领域&#xff0c;图像分类任务是衡量算法性能的重要基准。本文将介绍我们如何使用一种高效的卷积神经网络架构——ShuffleNet&#xff0c;来处理 CIFAR-100 数据集上的图像分类问题。 CIFAR-100 数据集简介 CIFAR-100 数据集是一个广泛使用的图像分类数据集&…...

怎么利用短信接口发送文字短信

在当今这个快节奏的数字时代&#xff0c;即时通讯已成为人们日常生活和工作中不可或缺的一部分。而短信接口&#xff08;SMS Interface&#xff09;&#xff0c;作为传统与现代通讯技术结合的典范&#xff0c;凭借其高效、稳定、广泛覆盖的特性&#xff0c;在众多领域发挥着不可…...

【C#生态园】提升C#开发效率:掌握这六款单元测试利器

从xUnit到SpecFlow&#xff1a;C#测试驱动开发全指南 前言 在C#开发中&#xff0c;单元测试和模拟框架是至关重要的工具&#xff0c;它们可以帮助开发人员确保代码的质量和可靠性。本文将介绍一些常用的C#单元测试框架和相关库&#xff0c;包括xUnit、NUnit、Moq、FluentAsse…...

【QT】自制一个简单的小闹钟,能够实现语音播报功能

做了一个自制的小闹钟&#xff0c;能够自己输入时间&#xff0c;以及对应的闹铃&#xff0c;时间到了自动播放设定的闹铃&#xff0c;可以随时取消重新设定&#xff0c;采用分文件编译 注意&#xff1a;需要在.pro文件中加入&#xff1a;QT core gui texttospeech 代码…...

基于深度学习的图像描述生成

基于深度学习的图像描述生成&#xff08;Image Captioning&#xff09;是一种将计算机视觉与自然语言处理结合的任务&#xff0c;其目标是通过自动生成自然语言来描述输入的图像。该技术能够理解图像中的视觉内容&#xff0c;并生成相应的文本描述&#xff0c;广泛应用于视觉问…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...