当前位置: 首页 > news >正文

数据挖掘(作业汇总)

目录

环境配置

实验1 数据

作业2


环境配置

实验开始前先配置环境

以实验室2023安装的版本为例:

1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了
下载并安装 Anaconda3-2022.10-Windows-x86_64.exe

镜像站下载地址(点击即可)

自己选择安装路径,其他使用默认选项。

(1)在“Advanced Installation Options”中,
勾选“Add Anaconda3 to my PATH environment variable.”(“添加Anaconda至我的环境变量。”)。

(2)勾选“Register Anaconda3 as my default Python 3.9”。

 

2、安装pycharm(在官网安装社区版就够用了

pycharm官网

下载并安装 pycharm-community-2022.2.4.exe 

3、打开cmd窗口,输入以下命令

conda create -n  DMEv  pip python=3.8

 记住DMEV所在的磁盘路径C:\Users\dell\.conda\envs\DMEV

# 如需删除环境,使用命令

conda remove -n DMEv    --all

 安装要用到的Python库:

activate   DMEv  
pip install numpy==1.20.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install matplotlib==3.3.4 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install opencv_python==4.4.0.40 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scipy==1.6.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scikit-learn==0.24.1 --index-url https://mirrors.aliyun.com/pypi/simple/ 
pip install h5py==2.10.0 --index-url https://mirrors.aliyun.com/pypi/simple/ 
pip install mnist==0.2.2 --index-url https://mirrors.aliyun.com/pypi/simple/ 


4、测试

在Pycharm中创建项目时,DMEV所在的路径下选择python.exe(和上面配置的对应)


在Pycharm中新建项目,配置 interpreter,运行以下代码:(没有报错,则导入成功

import cv2 as cv
import numpy as np
from sklearn.decomposition import PCA
import mnist
import matplotlib.pyplot as plt 

实验1 数据

一、实验目的

(1)练习和掌握python的基本使用。

(2)理解数据类型、数据质量、数据预处理、相似性和相异性度量的概念

(3)理解各种相似性和相异性度量(测度)及其含义,并且能编程计算。

二、实验内容

1编程实现任意给定两个相同维度的向量之间的欧氏距离计算函数dist_E(x,y)。

输入:两个任意k维向量x和y,其中k的值随由数据决定。如x=[3,20,3.5], y=[-3,34,7]。

import numpy as npdef dist_E(vect1, vect2):return np.sqrt(sum(np.power((vect1-vect2),2)))if __name__ == "__main__":x=np.array([3,20,3.5])y=np.array([-3,34,7])dist=dist_E(x,y)print(dist)

2编程实现任意给定两个相同维度的向量之间的夹角余弦相似度计算函数sim=sim_COS(x,y)。输入:两个任意k维向量x和y,其中k的值由数据决定。

import numpy as npdef sim_COS(x, y):num = x.dot(y.T)denom = np.linalg.norm(x) * np.linalg.norm(y)return num / denomif __name__ == "__main__":x=np.array([3, 2, 0, 5, 0, 0, 0, 2, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 1, 0, 2])sim=sim_COS(x,y)print(sim)

3编程实现任意给定两个相同维度的布尔向量之间的Jaccard系数计算函数dist1=dist_Jaccard(x,y)。

import numpy as npdef sim_Jaccard(vect1, vect2):sim=-1if(vect1.size!=vect2.size):print("length of input vectors must agree")else:ind1=np.logical_and(vect1==1,vect2==1)ind2=np.logical_or(vect1==1,vect2==1)x=vect1[ind1]y=vect2[ind2]n1=np.size(x)n2=np.size(y)sim=n1/n2return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_Jaccard(x,y)print(dist)

4编程实现任意给定两个相同维度的布尔向量之间的简单匹配系数计算函数dist1=dist_SMC(x,y)。

import numpy as npdef sim_SMC(vect1, vect2):sim = -1if (vect1.size != vect2.size):print("length of input vectors must agree")else:ind0 = np.logical_and(vect1 == 0, vect2 == 0)ind1 = np.logical_and(vect1 == 1, vect2 == 1)ind2 = np.logical_or(vect1 == 1, vect2 == 1)x = vect1[ind1]y = vect1[ind2]z=vect1[ind0]n1 = np.size(x)n2 = np.size(y)n3 = np.size(z)sim = (n1+n3) / (n2+n3)return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_SMC(x,y)print(dist)

作业2

1.数据的属性已知,数据的类别也已知,这样的数据叫做___________样本

我的答案:训练

2.数据的属性已知,数据的类别未知,这样的数据叫做___________样本

我的答案:测试

3.在最近邻分类算法中,可以通过KD树来加速k近邻的搜索。

我的答案:

4.已知有5个训练样本,分别为

样本1,属性为:[2,0,2]  类别 0

样本2,属性为:[1,5,2]  类别 1

样本3,属性为:[3,2,3]   类别 1

样本4,属性为:[3,0,2]   类别  0

样本5,属性为:[1,0,6]   类别 0

有1个测试样本,属性为:[1,0,2]

(1) 测试样本到5个训练样本(样本1、2、3、4、5)的欧氏距离依次为: ()()()()()。    

我的答案:1、5、3、2、4

(2) K=3,距离测试样本最近的k个训练样本依次为:样本  ()    、样本  ()  、样本 ()     

我的答案:1、4、3

(3)距离最近的k个训练样本类别依次为:类别()、类别()、类别()

我的答案:0、0、1

(4) KNN算法得到的测试样本的类别为:类别 ()

我的答案:0

未完待续

相关文章:

数据挖掘(作业汇总)

目录 环境配置 实验1 数据 作业2 环境配置 实验开始前先配置环境 以实验室2023安装的版本为例: 1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了) 下载并安装 Anaconda3-2022.10-Windows-x86_64.ex…...

基于微信小程序的图书馆选座系统源码

开发环境及工具: 大等于jdk1.8,大于mysql5.5,idea(eclipse),微信开发者工具 技术说明: springboot mybatis 小程序 代码注释齐全,没有多余代码,适合学习(…...

K8S 三种探针 readinessProbe、livenessProbe和startupProbe

一、POD状态 Pod 常见的状态 Pending:挂起,我们在请求创建pod时,条件不满足,调度没有完成,没有任何一个节点能满足调度条件。已经创建了但是没有适合它运行的节点叫做挂起,这其中也包含集群为容器创建网络…...

Android 设置背景颜色透明度

前言 本章是对设计给出的颜色做透明度的处理 原因 一般情况下我们是不需要做处理的,那为什么又需要我们做透明度呢,原因就是咱们的设计小哥哥、小姐姐们没有自己做处理,如果处理了的话,我们直接使用设计标注的AHEX颜色就行&a…...

聚类算法层次聚类

###cluster.py #导入相应的包 import scipy import scipy.cluster.hierarchy as sch from scipy.cluster.vq import vq,kmeans,whiten import numpy as np import matplotlib.pylab as plt #生成待聚类的数据点,这里生成了20个点,每个点4维: pointsscipy.randn(20,4) #加一…...

js 数据类型

1.概念 数据类型指的是可以在程序中存储和操作的值的类型,每种编程语言都有其支持的数据类型,不同的数据类型用来存储不同的数据,例如文本、数值、图像等。 JavaScript 是一种动态类型的语言,在定义变量时不需要提前指定变量的类…...

多级评论单表结构设计

这里的多级,本质上其实也就二级,例如微博的评论, 一级评论: 对微博的评论 二级评论: 对微博下的评论的回复评论 ,这里包括二种 1. 回复的是一级评论, 2, 回复的是二级评论 效果如下 表数据 查…...

Mac M1通过VMWare Fusion安装Centos7记录(镜像和网络有大坑)

以前用linux系统基本都在我的服务器上或者是在win上进行,从没有在M1上进行创建,因此走了一些坑吧,这里会列出我的详细安装步骤。 下载镜像 镜像的下载网站:https://www.centos.org/download/ 在该网站中,不管是Every…...

女生适合当程序员吗?

在这个节日里,让我们来讨论一个比较热门的话题吧。女生到底适不适合当程序员? 在开启这个话题前,我们先来认识一位伟大的女性吧。 阿达洛芙莱斯(Augusta Ada King)是著名英国诗人拜伦之女,她本职是一位数…...

昇腾AI机器人发布,12家企业、5家高校签约,昇腾AI开发者创享日全国巡展沈阳首站成功举办

“创未来,享非凡”昇腾AI开发者创享日2023年全国巡回首站活动成功举办,本次活动由辽宁省科技厅指导,由沈阳市科技局、浑南区人民政府、沈阳高新区管理委员会、华为技术有限公司共同主办,沈阳昇腾人工智能生态创新中心承办&#xf…...

anaconda如何改变虚拟环境安装路径

1、查看anaconda的环境配置(对应结果如下图所示) conda config --show 或者 conda info 查看虚拟环境安装位置的结果如上图所示 2、修改配置语法 conda config --add key value #添加语法 conda config --remove key value #删除语法 其中&#xff0…...

根据卫星运动矢量计算轨道六根数

前言 STK软件在给定六根数时,可求得卫星位置和速度矢量,但有时我们通过星历参数得到卫星的位置和速度矢量,希望能够反演得出卫星轨道的六根数。从而方便对该卫星轨道进行仿真模拟。 计算过程 给定卫星在J2000坐标系下的的位置矢量r和速度矢…...

关于微信小程序安装npm的过程,从下载到小程序内部安装完成

1.先从官网下载nodejs 网站为Node.js (nodejs.org),选择左边第一个2 然后一直next,选默认就行 选择自己喜欢的路径我的是D:\nodejs-v18.12.1 3 下载完成后,先在安装文件夹中新建两个文件夹 node_cache node_global 4 配置一下环境变量&…...

IO-操作系统

用户态和内核态 现代操作系统,为了保护系统的安全,都会划分出内核空间和用户空间,或者我们经常说的内核态和用户态。简单来说,就是划分为内核态和用户态两个等级,运行在用户态的进程大都是一些应用程序,能够…...

Downie 4 4.6.12 MAC上最好的一款视频下载工具

Downie for Mac 简介 Downie是Mac下一个简单的下载管理器,可以让您快速将不同的视频网站上的视频下载并保存到电脑磁盘里然后使用您的默认媒体播放器观看它们。 Downie 4 Downie 4 for Mac Downie 4 for Mac软件特点 支持许多站点 -当前支持1000多个不同的站点&…...

unity 玩家移动时idle和run动画频繁切换

项目场景: unity 控制玩家移动 问题描述 idle和run动画频繁切换 void Movement(){ xVelocity Input.GetAxisRaw("Horizontal"); anim.SetFloat("speed",Mathf.Abs(rb.velocity.x));//跑动动画 if(xVelocity !0){ transform.localScal…...

小程序 table组件

最近有在小程序中用table的需求,但是没有找到有符合要求的组件,所以自己弄了一个,能满足基本需求。 组件下载:https://download.csdn.net/download/weixin_67585820/85047405 引入 "usingComponents": {"table": "…...

利用摄影测量进行地形建模的介绍

一、前言 从一个地方到另一个地方的地球表面由连续和突然的海拔变化组成,个人和社会都必须应对这些变化。 水从高山和丘陵向下流,从溪流流入河流,形成三角洲,最终汇入大海。 三维 (3D) 地面信息的获取和表示一直是与行星表面相关的…...

中文代码138

邢唷?? > ? ? ? ? ? ? ?R o o t E n t r y ? F 喹8N"a? ? S u m m a r y I n f …...

JQuery用法

JQuery 优点 : (1)提供了强大的功能函数 (2)解决浏览器兼容性问题 (3)实现丰富的 UI 和插件 (4)纠正错误的脚本知识… 1、Jquery对象 $ 符号在 jQuery 中代表对 jQuery 对象的引用,…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

什么是EULA和DPA

文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下&#xf…...

土建施工员考试:建筑施工技术重点知识有哪些?

《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

Yii2项目自动向GitLab上报Bug

Yii2 项目自动上报Bug 原理 yii2在程序报错时, 会执行指定action, 通过重写ErrorAction, 实现Bug自动提交至GitLab的issue 步骤 配置SiteController中的actions方法 public function actions(){return [error > [class > app\helpers\web\ErrorAction,],];}重写Error…...

python基础语法Ⅰ

python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器,来进行一些算术…...