如何用iOS自带摄像头进行拍摄获取视频流以及OpenCV图像处理实时显示
目录
- 概述
- 一、如何用Swift调用OpenCV库
- 1.项目引入OpenCV库
- 2.桥接OpenCV及Swift
- 二、运用AVFoundation获取实时图像数据
- 1.建立视频流数据捕获框架
- 2.建立 Capture Session
- 3.取得并配置 Capture Devices
- 4.设定 Device Inputs
- 5.配置Video Data Output输出
- 6.工程隐私权限配置
- 7.处理相机视频回调
- 三、视频流原始数据CMSampleBuffer处理
- 1.CMSampleBuffer数据转换为Mat数据
- 2.回调中的数据处理
- 3.Mat数据转换为UIImage数据用于显示
- 四、Swift界面搭建
- 1.在UI层捕获相机数据
- 2.直接显示CMSampleBuffer方法
- 五、基于Object-C++的OpenCV图像处理部分
- 1.引入头文件
- 2.OpenCV人脸识别输出识别框
- 总结
概述
在2020年6月9日之后,OpenCV可以直接在Objective-C和Swift中使用它,而无需自己编写Objective-C++,可以直接在OpenCV官网下载iOS Package包,使用起来也是比较简单。但由于之前对OpenCV库的使用是使用C++编写,所以Objective-C++在图像处理部分使用起来更顺手,因此本文主要的技术框架是使用Objective-C++编写图像处理流程,Swift编写iOS界面及AVFoundation相机等的调用以获取实时的图像数据。本文主要以实时框出人脸为示例,iOS移动端界面的显示结果大致如下图。

OpenCV官网:https://opencv.org/releases/
一、如何用Swift调用OpenCV库
1.项目引入OpenCV库
- 使用cocoapods就非常简单:
pod 'OpenCV'
- 自行手动添加:在官网下载相应版本的iOS Pack,解压后得到一个 opencv2.framework 库,创建项目并右键添加文件到项目。
2.桥接OpenCV及Swift
- 前面说到OpenCV框架是用C++进行编程的,因此要用Objective-C++代码于Swift代码进行桥接。首先添加一个 Objective-C 文件到项目中,会弹出一个是否添加 Bridging-Header 文件,选择添加(若此处没弹出,则可以手动添加Bridging-Header 文件,即添加一个头文件(Header file),重命名为“项目名-Bridging-Header.h”),这就实现了Swift和Object-C的混编。
- 将这个Object-C的文件扩展名“.m”改为“.mm”这就将该文件变成了Objective-C++文件,文件大致如下

二、运用AVFoundation获取实时图像数据
Apple预设的APIs 如UIImagePickerController能够直接获取摄像头获取的图像并显示在界面上,操作简单,但无法对原数据进行操作,因此本文中应用AVFoundation的 Capture Sessions来采集图像和视频流。根据官方文档,Capture Session 是用以【管理采集活动、并协调来自 Input Devices 到采集 Outputs 的数据流】。在 AVFoundation 内,Capture Sessions 是由AVCaptureSession来管理的。
1.建立视频流数据捕获框架
首先创建一个NSObject类型的Controller名为CameraController,处理摄像头的事务,设置prepare函数以供主程序调用,其主要负责设立一个新的 Capture Session。设定 Capture Session 分为五个步骤:
- 建立一个 Capture Session
- 取得并配置 Capture Devices
- 在 Capture Device 上建立 Inputs
- 设置一个 Video Data Output 物件
- 配置Video Data Output Queue参数
func prepare(completionHandler: @escaping (Error?) -> Void) {//建立一个 Capture Sessionfunc createCaptureSession() { }//取得并配置 Capture Devicesfunc configureCaptureDevices() throws { }//在 Capture Device 上建立 Inputsfunc configureDeviceInputs() throws { }//设置一个 Video Data Output 物件func configureVideoDataOutput() throws { }//配置Video Data Output Queue参数func configureVideoDataOutputQueue() throws{ }DispatchQueue(label: "prepare").async {do {createCaptureSession()try configureCaptureDevices()try configureDeviceInputs()try configureVideoDataOutput()try configureVideoDataOutputQueue()}catch {DispatchQueue.main.async {completionHandler(error)} return}DispatchQueue.main.async {completionHandler(nil)}}
}
2.建立 Capture Session
建立新的AVCaptureSession,并将它存储在captureSession的属性里,并设定一些用于抛出的错误类型
var captureSession: AVCaptureSession?func createCaptureSession() { self.captureSession = AVCaptureSession()
}//设定prepare过程中遇到的错误类型enum CameraControllerError: Swift.Error {case captureSessionAlreadyRunningcase captureSessionIsMissingcase inputsAreInvalidcase invalidOperationcase noCamerasAvailablecase unknown}//设定相机位置为前后相机public enum CameraPosition {case frontcase rear}
3.取得并配置 Capture Devices
建立了一个AVCaptureSession后,需要建立AVCaptureDevice物件来代表实际的相机
//前置镜头var frontCamera: AVCaptureDevice?//后置镜头var rearCamera: AVCaptureDevice?func configureCaptureDevices() throws {//使用了AVCaptureDeviceDiscoverySession找出设备上所有可用的内置相机 (`.builtInDualCamera`)。//若没找到相机则抛出异常。let session = AVCaptureDevice.DiscoverySession.init(deviceTypes: [AVCaptureDevice.DeviceType.builtInWideAngleCamera], mediaType: AVMediaType.video, position: .unspecified) let cameras = session.devices.compactMap { $0 }guard !cameras.isEmpty else { throw CameraControllerError.noCamerasAvailable }//遍历前面找到的可用相机,分辨出前后相机。//然后,将该相机设定为自动对焦,遇到任何问题也会抛出异常。for camera in cameras {if camera.position == .front {self.frontCamera = camera}if camera.position == .back {self.rearCamera = cameratry camera.lockForConfiguration()camera.focusMode = .continuousAutoFocuscamera.unlockForConfiguration()}}}
4.设定 Device Inputs
var currentCameraPosition: CameraPosition?
var frontCameraInput: AVCaptureDeviceInput?
var rearCameraInput: AVCaptureDeviceInput?func configureDeviceInputs() throws {//确认`captureSession`是否存在,若不存在抛出异常guard let captureSession = self.captureSession else { throw CameraControllerError.captureSessionIsMissing }//建立所需的 Capture Device Input 来进行数据采集。//`AVFoundation`每一次 Capture Session 仅能允许一台相机输入。//由于装置的初始设定为后相相机。先尝试用后相机 Input,再加到 Capture Session;if let rearCamera = self.rearCamera {self.rearCameraInput = try AVCaptureDeviceInput(device: rearCamera)if captureSession.canAddInput(self.rearCameraInput!) { captureSession.addInput(self.rearCameraInput!) }self.currentCameraPosition = .rear}//尝试建立前相机Input else if let frontCamera = self.frontCamera {self.frontCameraInput = try AVCaptureDeviceInput(device: frontCamera)if captureSession.canAddInput(self.frontCameraInput!) { captureSession.addInput(self.frontCameraInput!) }else { throw CameraControllerError.inputsAreInvalid }self.currentCameraPosition = .front}else { throw CameraControllerError.noCamerasAvailable }
}
5.配置Video Data Output输出
var videoOutput: AVCaptureVideoDataOutput?//配置相机的视频输出,并开始func configureVideoDataOutput() throws {guard let captureSession = self.captureSession else { throw CameraControllerError.captureSessionIsMissing }self.videoOutput = AVCaptureVideoDataOutput()if captureSession.canAddOutput(self.videoOutput!) { captureSession.addOutput(self.videoOutput!) }captureSession.startRunning()}//配置视频的输出代理及输出格式func configureVideoDataOutputQueue() throws{let videoDataOutputQueue = DispatchQueue(label: "videoDataOutputQueue")self.videoOutput!.setSampleBufferDelegate(self, queue: videoDataOutputQueue)self.videoOutput!.alwaysDiscardsLateVideoFrames = falselet BGRA32PixelFormat = NSNumber(value: Int32(kCVPixelFormatType_32BGRA))let rgbOutputSetting = [kCVPixelBufferPixelFormatTypeKey.string : BGRA32PixelFormat]self.videoOutput!.videoSettings = rgbOutputSetting}
6.工程隐私权限配置
根据Apple 规定的安全性要求,必须提供一个app使用相机权限的原因。在工程的Info.plist,加入下图的设置:

7.处理相机视频回调
能够从下方的回调中得到相机返回的实时数据,格式为CMSampleBuffer,该视频流格式不止包含图像信息还包含时间戳信息等,若想通过opencv进行处理还需进行数据转换。
extension CameraController: AVCaptureVideoDataOutputSampleBufferDelegate{func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {}
}
参考地址:https://www.appcoda.com.tw/avfoundation-camera-app/
三、视频流原始数据CMSampleBuffer处理
1.CMSampleBuffer数据转换为Mat数据
OpenCV提供了UIImageToMat的函数,根据这个思路,我们应当将CMSampleBuffer转换为UIImage数据,CMSsampleBuffer不止包含ImageBuffer,通过API自带的CMSampleBufferGetImageBuffer(),可以得到与我们希望得到的图像数据更为接近的cvPixelBuffer。
总的来说,下方是CMSampleBuffer转换为UIImage的两种方式,第一种通过CIImage第二种通过CGImage,通过CIImage转换成的UIImage虽然能显示在UIImageVIew上,但是在转换成Mat格式的时候会报错,因此选用第二种通过CGImage的转换。最后调用opencv库的UIImageToMat函数便能得到Mat数据了。
func image(orientation: UIImage.Orientation = .up, scale: CGFloat = 1.0) -> UIImage? {if let buffer = CMSampleBufferGetImageBuffer(self) {let ciImage = CIImage(cvPixelBuffer: buffer)return UIImage(ciImage: ciImage, scale: scale, orientation: orientation)}return nil}func imageWithCGImage(orientation: UIImage.Orientation = .up, scale: CGFloat = 1.0) -> UIImage? {if let buffer = CMSampleBufferGetImageBuffer(self) {let ciImage = CIImage(cvPixelBuffer: buffer)let context = CIContext(options: nil)guard let cg = context.createCGImage(ciImage, from: ciImage.extent) else {return nil} return UIImage(cgImage: cg, scale: scale, orientation: orientation)}return nil}
2.回调中的数据处理
这边选用的方案是UIImageView来显示原始图像,并且在UIImageView上添加一个蒙层图像来显示识别框。此处选用蒙层的原因是,图像处理每帧需要70ms的处理时间,若直接显示处理后的图片会有延迟丢帧的情况视觉效果较差,因此实时图像采用原始图像数据,而识别框丢帧并不影响视觉效果。
//回调原始图像var videoCpatureCompletionBlock: ((UIImage) -> Void)?//回调CMSsmapleBuffer图像var videoCaptureCompletionBlockCMS: ((CMSampleBuffer)-> Void)?//回调蒙层图像var videoCaptureCompletionBlockMask: ((UIImage) -> Void)?//用于记录帧数var frameFlag : Int = 0//用于给异步线程加锁var lockFlagBool : Bool = falsefunc captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {if let image = sampleBuffer.imageWithCGImage(orientation: .up, scale: 1.0){self.frameFlag = self.frameFlag + 1var output = imageif(self.frameFlag != -1){self.videoCaptureCompletionBlockCMS?(sampleBuffer)self.videoCpatureCompletionBlock?(output)if(self.lockFlagBool == false){//此处必须开线程处理,否则会报错DispatchQueue.global().async {lockFlagBool = truevar output = image//addimageProcess为opencv图像处理过程,写在Objecj-C++文件中,本文后面记录output = opencv_test.addimageProcess(output)self.videoCaptureCompletionBlockMask?(output)lockFlagBool = false}}}else{print("丢帧")self.frameFlag = 0}}}
3.Mat数据转换为UIImage数据用于显示
为了最后能用于显示,还要转换为UImage,该部分很简单,直接调用OpenCV的库函数,当然如果想转换为CMSampleBuffer的话还需要重新添加丢失的数据,比如时间戳。
MatToUIImage()
参考地址:https://stackoverflow.com/questions/15726761/make-an-uiimage-from-a-cmsamplebuffer
四、Swift界面搭建
1.在UI层捕获相机数据
UI界面的操作比较简单,实例化之前的CameraController类,并设定configureCameraController函数来调用类中的prepare函数,以及接受回调的图像数据,这些回调对UIImageView的图像刷新必须要在主线程中,否则会报错。其中,selfImageView和maskImageView是两个自己创建的UImageView来显示UIImage图像的,这两个UIImageView要保持在同样位置同样大小。
let cameraController = CameraController()override func viewDidLoad() {configureCameraController() }func configureCameraController() {cameraController.prepare {(error) inif let error = error {print(error)}self.cameraController.videoCpatureCompletionBlock = { image inDispatchQueue.main.async {self.selfImageView.image = image}}self.cameraController.videoCaptureCompletionBlockMask = { image inDispatchQueue.main.async {self.maskImageView.image = image}}//直接显示CMSampleBuffer的方法// self.cameraController.videoCaptureCompletionBlockCMS = { CMSampleBuffer in//self.displayLayer.enqueue(CMSampleBuffer)//}}}
2.直接显示CMSampleBuffer方法
其实苹果的API也提供了直接显示CMSampleBuffer的简单方法,通过AVSampleBufferDisplayLayer以及其.enqueue方法,其展示方式如下:
var displayLayer:AVSampleBufferDisplayLayer!override func viewDidLoad() {displayLayer = AVSampleBufferDisplayLayer()displayLayer.videoGravity = .resizeAspect self.imageView.layer.addSublayer(displayLayer)self.displayLayer.frame.origin.y = self.imageView.frame.origin.yself.displayLayer.frame.origin.x = self.imageView.frame.origin.x}func configureCameraController() {cameraController.prepare {(error) inif let error = error {print(error)}//直接显示CMSampleBuffer的方法self.cameraController.videoCaptureCompletionBlockCMS = { CMSampleBuffer inself.displayLayer.enqueue(CMSampleBuffer)}}}
五、基于Object-C++的OpenCV图像处理部分
1.引入头文件
这部分用C++编写过OpenCV的都相当熟悉了,在.mm文件中引入以下头文件,并引入命名空间,若该部分找不到文件应当确认是否已正确安装OpenCV库。
#import <opencv2/opencv.hpp>
#import "opencv-test.h"
#import <opencv2/imgcodecs/ios.h>//对iOS支持
#import <opencv2/imgcodecs/ios.h>
//导入矩阵帮助类
#import <opencv2/highgui.hpp>
#import <opencv2/core/types.hpp>
#import <iostream>using namespace std;
using namespace cv;@implementation opencv_test//各类处理函数
@end
2.OpenCV人脸识别输出识别框
本文使用了OpenCV自带的人脸识别框架CascadeClassifier,将得到的人脸坐标放入vector中,最后绘制在蒙层上,最后输出蒙层图片。其它对于图像的处理也可以用相同的方式处理,在参考资料中有马赛克操作。
+(UIImage*)addimageProcess:(UIImage*)image {//用于记录时间CFAbsoluteTime startTime = CFAbsoluteTimeGetCurrent();Mat src;//将iOS图片->OpenCV图片(Mat矩阵)UIImageToMat(image, src);Mat src_gray;//图像灰度化cvtColor(src, src_gray, COLOR_RGBA2GRAY, 1);std::vector<cv::Rect> faces;//初始化OpenCV的人脸识别检测器CascadeClassifier faceDetector;//获取权重文件,文件需要提前导入至工程目录中NSString* cascadePath = [[NSBundle mainBundle]pathForResource:@"haarcascade_frontalface_alt"ofType:@"xml"];//配置检测器faceDetector.load([cascadePath UTF8String]);faceDetector.detectMultiScale(src_gray, faces, 1.1,2, 0|CASCADE_SCALE_IMAGE, cv::Size(30, 30));//确定图像宽高int width = src.cols;int height = src.rows;//Mat Mask = Mat::zeros(width, height, CV_8UC4);//创建透明蒙层图像 Scalar(0,0,0,0) 分别是RGBA A为透明度Mat Mask = Mat(height, width, CV_8UC4, Scalar(0,0,0,0));// Draw all detected facesfor(unsigned int i = 0; i < faces.size(); i++){const cv::Rect& face = faces[i];// Get top-left and bottom-right corner pointscv::Point tl(face.x, face.y);cv::Point br = tl + cv::Point(face.width, face.height);// Draw rectangle around the faceScalar magenta = Scalar(0, 255, 0, 255);cv::rectangle(Mask, tl, br, magenta, 4, 8, 0);}//打印处理时间CFAbsoluteTime endTime = (CFAbsoluteTimeGetCurrent() - startTime);NSLog(@"normalProcess方法耗时: %f ms", endTime * 1000.0);return MatToUIImage(Mask);
}
参考资料:https://www.twblogs.net/a/5b830b452b717766a1eadb20/?lang=zh-cn
总结
遇到的困难:一是在于方案中用UIImageView来进行显示,必须在主线程中进行渲染,对于线程的处理相对繁琐,若是处理不得当便会有延时丢帧不刷新等的问题。
存在的问题:OpenCV自带的人脸识别算法比较老旧,处理速度也比较慢效果也一般,要引入其他神经网络框架在客户端上的可行性有待讨论,处理速度也未知。
另外,若有需要总的工程文件的可以私聊我。
相关文章:
如何用iOS自带摄像头进行拍摄获取视频流以及OpenCV图像处理实时显示
目录概述一、如何用Swift调用OpenCV库1.项目引入OpenCV库2.桥接OpenCV及Swift二、运用AVFoundation获取实时图像数据1.建立视频流数据捕获框架2.建立 Capture Session3.取得并配置 Capture Devices4.设定 Device Inputs5.配置Video Data Output输出6.工程隐私权限配置7.处理相机…...
智安网络|为什么说防火墙是我们信息安全的第一道防线?
网络安全现状: ①攻击者需要的技术水平逐渐降低,手段更加灵活,联合攻击急你的剧增多:网络蠕虫具有隐蔽性、传染性、破坏性、自主攻击能力,新一代网络蠕虫和黑客攻击、计算机病毒之间的界限越来越模糊 ②网络攻击趋利…...
Android多媒体功能开发(8)——使用VideoView控件播放视频
Android播放视频类主要有两种方式: VideoView控件SurfaceView控件MediaPlayer VideoView是SurfaceView的子类,实际上VideoView相当于SurfaceView MediaPlayer。SurfaceView支持的功能VideoView都支持。也可用VideoViewMediaPlayer的方式播放。 视频播放…...
python调用CC++
python调用C程序 一般来说在python调用C/C程序主要可以分为3步: 1、编写C/C实现程序。2、将C/C程序编译成动态库。-3、在Python中调用编译生成的库。Python在调用C/C程序时有一些不同,需要注意。 Python调用C语言程序比较简单,将C语言程序…...
[golang gin框架] 10.Gin 商城项目介绍
一.商城项目介绍 1.详细功能介绍图 2.数据库 ER 图 需要用到的数据表举例 二.MVC架构搭建以及执行流程分析 1.关于 MVC 模式的简单介绍 Gin 不是一个 MVC 的框架,所有的代码都可以写在 main.go 中。当我们的项目比较大的时候, 所有代码写在一个文件里面…...
Endor Labs:2023年十大开源安全风险
近日,Endor Labs发布了一份新报告,确定了2023年的十大开源安全风险。报告显示,许多软件公司依赖于开源软件代码,但在如何衡量和处理与开源软件相关的风险和漏洞方面缺乏一致性。调查发现,在应用程序中超过80%的代码可能…...
关于Error和Exception的一些思考 小结
目录 1. ERROR 2. Exception 2.1 checked Exception 2.2 unchecked Exception 2.3 区别 3. 内存溢出 3.1 堆溢出 3.2 永久代/元空间溢出 3.3 方法栈溢出 Java中,所有的异常都有一个共同的父类:Throwable类。 Throwable类有两个重要的子类&#…...
Mac环境变量配置(Java)
1.打开终端: 2.输入命令:【/usr/libexec/java_home -V】,查看默认的jdk下载地址(绿色下划线的就是jdk默认路径)(注意⚠️:命令行终端是区分大小写的【-v 是不对的,必须是大写 -V】) …...
通过这三个文件彻底搞懂rocketmq的存储原理
前言 RocketMQ是阿里开发的一个高性能的消息队列,支持各种消息类型,而且支持事务消息,可以说是现在的很多系统中的香饽饽了,所以呢,怎么使用大家肯定是要学习的 我们作为一个有梦想的程序员,在学习一门技…...
Linux安装Nvidia显卡驱动
使用的Linux系统为 Ubuntu 18.04,显卡为GeForce RTX 3060 。 查看ubuntu版本号命令:sudo lsb_release -a 查看显卡型号命令:lspci | grep -i vga (详细查看方法: 查看显卡型号)。 下面是安装显卡驱动步…...
GPT-4 介绍
1 简介 本文根据openAI的2023年3月的《GPT-4 Technical Report 》翻译总结的。 原文地址:https://arxiv.org/pdf/2303.08774.pdf 原文确实没有GPT-4 具体的模型结构,openAI向盈利组织、非公开方向发展了。也没透露硬件、训练成本、训练数据、训练方法等…...
Ubuntu下单机安装Hadoop详细教程(附所需安装包下载)
目录 前言 一、创建Hadoop用户 二、更新apt和安装Vim编辑器 三、安装SSH和配置SSH无密码登录 四、安装Java环境 1. 安装JDK 2. 配置JDK环境 3. 检验安装 五、安装单机Hadoop 1. 下载安装Hadoop 2. 运行示例 总结 前言 本文安装的 Hadoop 及 Java 环境基于林子雨老…...
【嵌入式烧录/刷写文件】-2.1-详解Intel Hex格式文件
目录 1 什么是Intel Hex 2 Intel Hex的格式 2.1 Intel Hex的Record结构 2.1.1 “Record type记录类型”的说明 2.1.2 “Record length记录长度”的说明 2.1.3 如何计算“Checksum校验和” 2.2 Record order记录顺序 2.3 Text line terminators文本行终止符 3 Hex文件的…...
【云原生】初识 Kubernetes — pod 的前世今生
目录标题前言🐳 Kubernetes到底是什么?🐬 K8s 的由来🐬K8s 的工作方式🐬 K8s 主要组件🐋Master 组件🐋Node 组件🐳 pod 是什么?🐬pod 的概念🐬控制…...
【基础篇】Java类加载器详解
类加载过程详解 类的生命周期 类从被加载到虚拟机内存到开始卸载出内存为止,生命周期可以简单概括为7个阶段:加载(Loading)、验证(Verification)、准备(Preparation)、解析ÿ…...
Pytorch动手实现Transformer机器翻译
Pytorch动手实现Transformer机器翻译前言一、环境配置1. torchtextMethod1:Method2:2. Spacy以en包下载为例:手动安装语言包到spacy3. NLTKMethod1:Method2:二、运行结果1. 模型训练(train)2. 翻…...
宝塔面板部署node+vue项目注意事项
宝塔面板部署nodevue项目注意事项 宝塔连接云服务器 如果服务器上没有安装宝塔面板,需要先安装,安装流程如下: 从宝塔官网主页进去,点击下载安装,然后点击在线安装 输入服务器IP和密码在服务器上安装宝塔面板 等待一…...
【LeetCode】剑指 Offer 39. 数组中出现次数超过一半的数字 p205 -- Java Version
题目链接:https://leetcode.cn/problems/shu-zu-zhong-chu-xian-ci-shu-chao-guo-yi-ban-de-shu-zi-lcof/ 1. 题目介绍(39. 数组中出现次数超过一半的数字) 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。 你可…...
fisco bcos用caliper0.2.0进行压力测试的安装配置
一、前期环境 1. 硬件 需要外网权限 2. 操作系统 版本要求:Ubuntu > 16.04, CentOS > 7, MacOS > 10.14 3. 基础软件 python 2.7,make,g,gcc,git sudo apt install python2.7 make g gcc git curl git confi…...
正在进行 | 用友企业数智化财务峰会落地广州 高能不断
3月28日,以「智能会计 价值财务」为主题的“2023企业数智化财务创新峰会”登陆广州。 此次用友企业数智化财务创新峰会,邀请了知名院校的专家学者、央国企等大型企业财务数智化领路人以及羊城权威媒体,近千人相约广州越秀国际会议中心,深度聚焦大型企业财务数智化创新应用…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...
