当前位置: 首页 > news >正文

分解+优化+组合+对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测

分解+优化+组合+对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测

目录

    • 分解+优化+组合+对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.分解+优化+组合+对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测,变分模态分解+麻雀搜索算法优化Transformer结合长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);

2.麻雀搜索算法优化参数为:学习率、隐含层单元数目、最大训练周期,运行环境为Matlab2023b及以上;

3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

先运行main1_VMD,进行vmd分解;再运行main2_SSA_Transformer_LSTM,三个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。
数据集
在这里插入图片描述

参考文献
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复分解+优化+组合+对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测(Matlab)
X = xlsread('北半球光伏数据.xlsx','C2:E296');save origin_data XL=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

相关文章:

分解+优化+组合+对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测

分解优化组合对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测 目录 分解优化组合对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.…...

二十三种设计模式之建造者模式(类比汽车制造厂好理解一些)

目录 1. 设计模式的分类 2. 定义 3. 建造者模式通常包含以下几个角色 4. 示例代码 5. 建造者模式的主要优点 1. 设计模式的分类 创建型模式(五种):工厂方法模式、单例模式、抽象工厂模式、原型模式、建造者模式。 结构型模式(七种):适配器模式、代…...

macos 系统文件操作时提示 Read-only file system 解决方法

这个情况是因为文件系统为只读, 需要我们执行一下命令重新将系统文件挂载为读写模式, 命令如下: sudo mount -uw / 这里的 mount 就是硬盘挂载命令, 后面的 -uw选项说明如下, 最后的 / 表示的是跟目录, 可以指定要修改的挂载路径,也可以默认. -u -u标志表示应更改已装载文…...

银行业务架构指导应用架构规划及设计方法

摘要 业务架构指导应用架构设计方法是指依托业务架构设计成果,开展应用架构应用划分设计、IT服务分层设计和数据模型设计的方法。通过业务架构指导应用架构设计,以IT研发项目驱动的方式,由IT系统落地业务架构设计成果,实现对业务流程快速拼接和产品灵活配置的支持,从而提升…...

最全面IO流介绍

1.字符集介绍 标准ASCII字符集:使用1个字节存储一个字符,首尾是0,总可以表示128个字符。是美国信息交换标准代码,包含英文、符号等等。 GBK汉字编码字符集,包含2万多个汉字等字符,GBK中一个中文字符编码成…...

fastadmin 文件上传腾讯云

1-安装腾讯云SDK composer require qcloud/cos-sdk-v5 2-腾讯云配置 <?phpnamespace app\common\controller;use Qcloud\Cos\Client; use think\Controller; use think\Db;class Tencent extends Controller {/*** 上传文件* param $config* param $key* return array*/p…...

《机器学习》—— PCA降维

文章目录 一、PCA降维简单介绍二、python中实现PCA降维函数的介绍三、代码实现四、PCA降维的优缺点 一、PCA降维简单介绍 PCA&#xff08;主成分分析&#xff0c;Principal Component Analysis&#xff09;是一种常用的数据降维技术。它通过线性变换将原始数据转换到新的坐标系…...

植物三萜皂苷生物合成途径及调控机制研究进展-文献精读48

摘要 三萜皂苷(triterpenoids saponins)是由三萜皂苷元和一个或多个糖基和/或其他化学基团缩合而成的一系列结构多样的天然化合物[1], 主要分布在五加科、蝶形花科、石竹科、桔梗科、毛茛科、玄参科、葫芦科等植物中[2]. 植物中三萜皂苷常分布在特定的器官和组织, 如人参(Pana…...

server 2016搭建FTP服务

目录 一、实验环境 二、在server 2016上面安装FTP服务 三、在server 2016上面配置FTP服务 四、创建用户&#xff08;也可创建用户组&#xff0c;给用户组赋予权限&#xff09; 一、实验环境 windows server 2016用于安装ftp服务 windows 10作为客户端进行测试。 二、在s…...

物理学基础精解【4】

文章目录 运动和力质点运动机械运动的参考系运动的相对性运动学中坐标系 参考文献 运动和力 质点运动 一个物体相对于另一个物体的位置或一个物体的某些部分相对于其他部分的位置 &#xff0c;随着时间而变化的过程&#xff0c;叫机械运动 。质点是一个物理学中的理想化模型&…...

【区块链 + 人才服务】Blockchain Workshop- 区块链编程实践平台 | FISCO BCOS应用案例

Blockchain Workshop v2.0&#xff08;以下简称 BCW v2.0&#xff09;是点宽网络科技有限公司升级的全新区块链实践教育平台产品。 BCW v2.0 区块链实践教育平台面向高校区块链专业人才培养&#xff0c;用于区块链专业技术学习和智能合约编程学习&#xff0c;平台基于 FISCO BC…...

Java面试篇基础部分-Java中常用的I/O模型

阻塞I/O模型 阻塞式的I/O模型是一种非常常见的I/O模型机制,在进行数据读写操作的时候,客户端会发生阻塞等待。 工作流程如图所示,该用户线程一直阻塞,等待内存中的数据就绪;内存中的数据就绪之后,内核态的数据将拷贝到用户线程中,并且返回I/O的执行结果到用户线程。这个…...

如何使用python运行Flask开发框架并实现无公网IP远程访问

文章目录 1. 安装部署Flask2. 安装Cpolar内网穿透3. 配置Flask的web界面公网访问地址4. 公网远程访问Flask的web界面 本篇文章主要讲解如何在本地安装Flask&#xff0c;以及如何将其web界面发布到公网进行远程访问。 Flask是目前十分流行的web框架&#xff0c;采用Python编程语…...

第三届828 B2B企业节开幕,大腾智能携手华为云共谱数字化新篇章

8月27日&#xff0c;由华为携手上万家伙伴共同发起的第三届828 B2B企业节在贵州正式开幕。 本届企业节推出上万款数智产品&#xff0c;600多个精选解决方案&#xff0c;旨在融通数智供需&#xff0c;加速企业智改数转&#xff0c;助推中国数智产业实力再升级。中共贵州省委副书…...

Linux网络编程IO管理

网络 IO 涉及到两个系统对象&#xff0c;一个是用户空间调用 IO 的进程或者线程&#xff0c;一个是内核空间的内核系统&#xff0c;比如发生 IO 操作 read 时&#xff0c;它会经历两个阶段&#xff1a; 等待内核协议栈的数据准备就绪&#xff1b;将内核中的数据拷贝到用户态的…...

SpringCloud集成ELK

1、添加依赖 <dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>6.1</version> </dependency>2、在logback-spring.xml中添加配置信息&#xff08;logback-sp…...

【卷起来】VUE3.0教程-06-组件详解

各位看官&#xff0c;点波关注和赞吧 组件允许我们将 UI 划分为独立的、可重用的部分&#xff0c;并且可以对每个部分进行单独的思考。在实际应用中&#xff0c;组件常常被组织成层层嵌套的树状结构&#xff1a; 这和我们嵌套 HTML 元素的方式类似&#xff0c;Vue 实现了自己的…...

JS Web

Web API 元素通用属性 元素自身属性 事件处理...

【Linux】传输层协议——UDP

零、传输层的作用是负责数据能够从发送端传输到接收端 一、再来认识一下端口号 端口号&#xff08;Port&#xff09;标识了一个主机进行通信的不同的应用程序。在TCP/IP协议中&#xff0c;用“源IP”&#xff0c;“源端口号”&#xff0c;“目的IP”&#xff0c;“目的端口号”…...

算法学习攻略总结 : 入门至进阶,通关之路指南

❃博主首页 &#xff1a; <码到三十五> ☠博主专栏 &#xff1a; <mysql高手> <elasticsearch高手> <源码解读> <java核心> <面试攻关> ♝博主的话 &#xff1a; <搬的每块砖&#xff0c;皆为峰峦之基&#xff1b;公众号搜索(码到…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...