Fair Graph RepresentationLearning via Diverse Mixture-of-Experts
发表于:WWW23
推荐指数: #paper/⭐⭐
问题背景:
背景
现实世界的数据很多样,阻止GNN学习公平的表示。当去偏见化后,他们面临着可学知识不足且属性有限的重大问题
解决方法:
应对公平训练导致可学习知识有限的挑战,G-Fame由多个专家神经网络组成,每个神经网络都包含自己的参数,以学习不同的知识,以实现节点表示的多样化。
此外,为了提高模型对可学习知识缺乏的抵抗力,我们提出了G-Fame++,其中我们从不同的角度设计了三种不同的策略:(1)从节点表示的角度,引入嵌入多样性正规化,使节点能够在消息传递过程中从邻居那里捕获更多不同的信息;(2)从层的角度出发,设计层多样性规则化,使不同层的输出多样化,使浅层和深层都能获得不同的表示;(3)从参数权重冗余的角度出发,提出专家权重正规化,使专家的权重参数多样化,使每个专家都能捕捉到不同的信息
框架图:
余知识
公平图增强
Fairness-Based 图增强
m i j = { 1 s i ≠ s j ∀ i , j ∈ N 0 o t h e r w i s e \left.m_{ij}=\left\{\begin{array}{cc}1&s_i\neq s_j&\forall i,j\in\mathcal{N}\\0&\mathrm{otherwise}\end{array}\right.\right. mij={10si=sjotherwise∀i,j∈N
其中, m i j = 1 m_{ij}=1 mij=1表示两个节点,他们拥有不同敏感属性是连接的。M代表mask矩阵去mask邻接矩阵。我们重新构建mask矩阵:(加了阈值)
r r ( m i j ) = { m i j with probability: p ( m i j ) = 1 2 + δ 1 − m i j with probability: p ( 1 − m i j ) = 1 2 − δ \left.rr(m_{ij})=\left\{\begin{array}{ll}m_{ij}&\text{with probability: }p(m_{ij})=\frac12+\delta\\1-m_{ij}&\text{with probability: }p(1-m_{ij})=\frac12-\delta\end{array}\right.\right. rr(mij)={mij1−mijwith probability: p(mij)=21+δwith probability: p(1−mij)=21−δ
最后,公平矩阵可以表示为:
A f a i r = A ∘ r r ( M ) A_{f\boldsymbol{air}}=A\circ rr(M) Afair=A∘rr(M)
(相当于图结构学习)
公平训练
min θ L ( D ; θ ) + λ ∥ θ ∥ 2 2 , s . t . Ω ( D ; θ ) < 0 , \min_\theta\quad\mathcal{L}(\mathcal{D};\theta)+\lambda\|\theta\|_2^2,\quad\mathrm{s.t.~}\Omega(\mathcal{D};\theta)<0, θminL(D;θ)+λ∥θ∥22,s.t. Ω(D;θ)<0,
混合专家
y = ∑ i ∈ R q i ( x ) E i ( x ) , y=\sum_{i\in\mathcal{R}}q_i(x)E_i(x), y=i∈R∑qi(x)Ei(x),
其中,q是门控,E是专家
每层的门控由下个函数计算:
q i ( x ) = exp ( H ( x ) i ) ∑ j = 0 N exp ( H ( x ) j ) , q_i(x)=\frac{\exp(H(x)_i)}{\sum_{j=0}^N\exp(H(x)_j)}, qi(x)=∑j=0Nexp(H(x)j)exp(H(x)i),
模型架构

G-FAME:图公平混合专家
传播函数:
h v ( l ) = COMBINE ( G-FAME ( l ) ( h v ( l − 1 ) ) , m v ( l ) ) ) , m v ( l ) = AGGREGATE ( { G-FAME ( l ) ( h u ( l − 1 ) ) , ∀ u ∈ N ( v ) } ) \begin{aligned}&h_{v}^{(l)}=\text{COMBINE}\left(\text{G-FAME}^{(l)}(h_{v}^{(l-1)}),m_{v}^{(l)})\right),\\&m_{v}^{(l)}=\text{AGGREGATE}\left(\left\{\text{G-FAME}^{(l)}(h_{u}^{(l-1)}),\forall u\in N(v)\right\}\right)\end{aligned} hv(l)=COMBINE(G-FAME(l)(hv(l−1)),mv(l))),mv(l)=AGGREGATE({G-FAME(l)(hu(l−1)),∀u∈N(v)})
实际就是GNN的传播函数
G − F A M E ( l ) ( h v ( l − 1 ) ) = ∑ i ∈ H ( l ) q i ( l ) ( h v ( l − 1 ) ) W i ( l ) ( h v ( l − 1 ) ) , \mathrm{G-FAME}^{(l)}(h_v^{(l-1)})=\sum_{i\in\mathcal{H}^{(l)}}q_i^{(l)}(h_v^{(l-1)})W_i^{(l)}(h_v^{(l-1)}), G−FAME(l)(hv(l−1))=i∈H(l)∑qi(l)(hv(l−1))Wi(l)(hv(l−1)),
G-FAME++ 加了多个正则化操作
样本多样性
嵌入正则化:让邻居样本相近,非邻居样本相远
L E D = − log ∑ v j ∈ V exp ( sin ( z i , z j ) / τ ) ∑ v k ∈ V exp ( sin ( z i , z k ) / τ ) , \mathcal{L}_{ED}=-\log\frac{\sum_{\boldsymbol{v}_j\in V}\exp(\sin(z_i,z_j)/\tau)}{\sum_{\boldsymbol{v}_k\in V}\exp(\sin(z_i,z_k)/\tau)}, LED=−log∑vk∈Vexp(sin(zi,zk)/τ)∑vj∈Vexp(sin(zi,zj)/τ),
层正则多样性
r cosine ( z l a , z l b ) = 1 ∣ V ∣ ∑ v i ∈ V ∣ z i l a ⊤ z i l b ∣ ∥ z i l a ∥ 2 ∥ z i l b ∥ 2 , r_{\text{cosine}}\left(z^{l_{a}}, z^{l_{b}}\right)=\frac{1}{|V|}\sum_{v_{i}\in V}\frac{\left|z_{i}^{l_{a}\top} z_{i}^{l_{b}}\right|}{\left\|z_{i}^{l_{a}}\right\|_{2}\left\|z_{i}^{l_{b}}\right\|_{2}}, rcosine(zla,zlb)=∣V∣1vi∈V∑ zila 2 zilb 2 zila⊤zilb ,
用对比损失去让相近层数靠近,相远层数相远
r contrast ( z l a , z l b ) = − 1 ∣ V ∣ ∑ v i ∈ V log exp ( z i l a ⊤ z i l b ) exp ( z i l a ⊤ z i l b ) + exp ( z i l a ⊤ ( ∑ j ≠ i z j l b n − 1 ) ) r_{\text{contrast}}\left(z^{l_{a}}, z^{l_{b}}\right) = -\frac{1}{|V|} \sum_{v_{i}\in V} \log \frac{\exp\left(z_{i}^{l_{a}\top} z_{i}^{l_{b}}\right)}{\exp\left(z_{i}^{l_{a}\top} z_{i}^{l_{b}}\right) + \exp\left(z_{i}^{l_{a}\top} \left(\frac{\sum_{j\neq i} z_{j}^{l_{b}}}{n-1}\right)\right)} rcontrast(zla,zlb)=−∣V∣1vi∈V∑logexp(zila⊤zilb)+exp(zila⊤(n−1∑j=izjlb))exp(zila⊤zilb)
L L D = ∑ l a , l b ∈ L ∣ a ≠ b r c o s i n e ( z l a , z l b ) + r c o n t r a s t ( z l a , z l b ) , \mathcal{L}_{LD}=\sum_{l_a,l_b\in L|_{a\neq b}}r_{cosine}(z^{l_a},z^{l_b})+r_{contrast}(z^{l_a},z^{l_b}), LLD=la,lb∈L∣a=b∑rcosine(zla,zlb)+rcontrast(zla,zlb),
专家多样性
max { W 1 ^ , . . . , W m ^ } ∈ S t − 1 { L M H S ( W ^ ) : = min i ≠ j ρ ( W i ^ , W j ^ ) } \max_{\{\hat{W_1},...,\hat{W_m}\}\in\mathbb{S}^{t-1}}\{\mathcal{L}_{\mathrm{MHS}}(\hat{W}):=\min_{i\neq j}\rho(\hat{W_i},\hat{W_j})\} {W1^,...,Wm^}∈St−1max{LMHS(W^):=i=jminρ(Wi^,Wj^)}
其中, ω ^ i = v e c ( W i ) ∣ ∣ v e c ( W i ) ∣ ∣ 2 \hat{\omega}_{i}=\frac{\mathrm{vec}(W_{i})}{||\mathrm{vec}(W_{i})||_{2}} ω^i=∣∣vec(Wi)∣∣2vec(Wi), S t − 1 : = { ω ^ ∈ R ∣ ∣ ∣ ω ^ ∣ ∣ 2 = 1 } \mathbb{S}^{t-1}:=\{\hat{\omega}\in\mathbb{R}| ||\hat{\omega}||_{2}=1\} St−1:={ω^∈R∣∣∣ω^∣∣2=1}, ρ ( ⋅ , ⋅ ) \rho(\cdot,\cdot) ρ(⋅,⋅)表示两个W的最短距离。
最终损失:
L G − F A M E + + = L G T + L E D + L L D + L M H S . \mathcal{L}_{\mathrm{G-FAME++}}=\mathcal{L}_{GT}+\mathcal{L}_{ED}+\mathcal{L}_{LD}+\mathcal{L}_{MHS}. LG−FAME++=LGT+LED+LLD+LMHS.
其实,如上可以总结:需要让专家之间的差距变大,否则没有意义。
相关文章:
Fair Graph RepresentationLearning via Diverse Mixture-of-Experts
发表于:WWW23 推荐指数: #paper/⭐⭐ 问题背景: 背景 现实世界的数据很多样,阻止GNN学习公平的表示。当去偏见化后,他们面临着可学知识不足且属性有限的重大问题 解决方法: 应对公平训练导致可学习知识…...
电机驱动开发之驱动板
目录 1.主要器件选型2.原理图设计3.PCB绘制电源调理驱动电路电流反馈位置反馈 4.PCB绘制5.打板验证6.总结 1.主要器件选型 器件参数封装理由LDOLM317DCYR (24V-12V 12V-5V)SOT-223小电流应用 LDO比DCDC噪声小响应快更为稳定预驱FD6288TTssop-20常见无刷…...
STM32F1 HAL库笔记2_HAL 系统驱动程序
1、HAL 固件驱动程序 API 1.1、如何使用此驱动程序 通用 HAL 驱动程序包含一组通用的 API,PPP 外设驱动程序可以使用这些 API 来开始使用 HAL。HAL 包含两个 API 类别: • 常见的 HAL API • 服务 HAL API 1.2、初始化和去初始化函数 本节提供的功能&a…...
el-table实现当内容过多时,el-table显示滚动条,页面不显示滚动条
估计有不少小伙伴在开发公司的ERP使用el-table都会遇到这么一个问题,就是产品经理提出,页面不出现滚动条,因为不美观。但是当el-table内容过多,超过页面的宽度时候,页面就会有滚动条。那应该如何解决呢?能不能让滚动条…...
Java面试篇基础部分-Java中的异常以及异常处理
导语 在实际的开发过程中,往往会遇到各种各样的编程异常,如何处理这些异常,直接会影响到整个程序和系统的稳定性,如果不能在合适的地方抛出合适的异常或者是对异常进行捕获。那么就会影响到整个程序的运行。所以如何处理异常,是作为每个开发者来说必不可少的开发技能。…...
win11 MySQL的坑
最近升级了系统,导致以前的安装的两个版本MySQL服务无法启动,只能在mysql的bin目录,执行mysqld --console才能启动,mysqld都无法启动, 所幸进行了数据库初始化,这次在MySQL的bin目录执行 mysqld或者mysqld …...
stm32单片机个人学习笔记1(简单介绍)
前言 本篇文章属于stm32单片机(以下简称单片机)的学习笔记,来源于B站教学视频。下面是这位up主的视频链接。本文为个人学习笔记,只能做参考,细节方面建议观看视频,肯定受益匪浅。 STM32入门教程-2023版 细…...
python中@staticmethod、@classmethod用法
1、类的基础介绍 类对象:定义的类就是类对象 类属性:定义在__init__ 外部的变量 类方法:定义在类中,且被classmethod 装饰的方法 实例对象:类对象实例化后就是实例对象 实例属性:定义在__init__内部带…...
Harmony Next 文件命令操作(发送、读取、媒体文件查询)
查询文件位置 hdc shell mediatool query IMG_20240902_204224.jpg 输出示例 拉取文件 hdc file recv /storage/cloud/100/files/Photo/4/IMG_1725281044_036.jpg aa.jpg 发送文件 hdc file send aa.jpg /storage/media/100/local/files/Docs/Download/ab.jpg 下载目录位置…...
Go语言中的链表与双向链表实现
链表基础 链表是一种由有限元素组成的数据结构,其中每个元素至少使用两个内存空间:一个存储实际数据,另一个存储指向下一个元素的指针,从而形成一个元素序列构成链表。链表的第一个元素称为头结点,而最后一个元素通常…...
开始一个WPF项目时的记忆重载入
目前在工业软件的UI开发方案选择中,WPF仍然是一个重要的选项。 但是其固有的复杂性,对于像我这样,并不是一直在从事界面开发的人来说,每次重启,都需要一两天的适应的时间。所以这里稍微写一个笔记。 还是老办法&…...
用go语言实现树和哈希表算法
算法复杂度 判断一个算法的效率通常基于其计算复杂度,这主要与算法访问输入数据的次数有关。计算机科学中常用大O表示法来描述算法的复杂度。例如,O(n)的算法只需访问一次输入数据,因此优于O(n)的算法,后者则优于O(n)的算法&…...
基于SpringBoot+Vue+MySQL的校园健康驿站管理系统
系统展示 用户前台界面 管理员后台界面 系统背景 本文设计并实现了一个基于SpringBoot后端、Vue前端与MySQL数据库的校园健康驿站管理系统。该系统旨在通过数字化手段,全面管理学生的健康信息,包括体温监测、疫苗接种记录、健康状况申报等,为…...
深入理解MATLAB中的事件处理机制
在MATLAB中,事件处理机制是一种强大的工具,它允许对象之间的交互和通信。这种机制基于观察者设计模式,其中一个对象(观察者)监听另一个对象(发布者)的状态变化。当发布者的状态发生变化时&#…...
线程--线程同步
这里写目录标题 同步概念线程同步概念数据混乱原因 互斥量原理锁的注意事项1、cpu时间轮片2、建议锁总结 使用锁来管理线程同步问题产生主要函数init、destorylock、unlock代码注意事项(锁的粒度) try锁死锁出现原因图解 读写锁特性图解函数总览init、de…...
【QT】Qt窗口
欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:QT 目录 👉🏻菜单栏设置👉🏻QToolBar练习 👉🏻QStausBar👉🏻Q…...
场外个股期权怎么给股票加杠杆?
今天期权懂带你了解场外个股期权怎么给股票加杠杆?场外期权交易通过向证券公司支付一定额度的股票期权费,然后买入大额的股票持仓,从而实现的杠杆交易。 买入看涨期权 操作:支付权利金购买看涨期权。 杠杆作用: 期…...
【Docker部署ELK】(7.15)
1、拉取镜像 docker pull docker.elastic.co/elasticsearch/elasticsearch:7.15.0 docker pull docker.elastic.co/kibana/kibana:7.15.0 docker pull docker.elastic.co/logstash/logstash:7.15.02、配置文件(解压资源到D盘DOCKER目录下) 2.1 配置文件…...
UE4_后期处理_后期处理材质及后期处理体积一
后期处理效果 在渲染之前应用于整个渲染场景的效果。 后期处理效果(Post-processing effect)使美术师和设计师能够对影响颜色、色调映射、光照的属性和功能进行组合选择,从而定义场景的整体外观。要访问这些功能,可以将一种称为…...
【PyQt6 应用程序】基于QtDesigner做一个用户登录页面
在当今的软件开发领域,用户界面(UI)设计和后端编程是创建现代、互动应用程序的两大重要组成部分。尤其是在开发具有用户登录功能的应用程序时,不仅要注重外观和用户体验的设计,还要确保后端逻辑的安全性和可靠性。 本文将介绍如何使用PyQt6框架结合UI设计,实现一个简单而…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
JS红宝书笔记 - 3.3 变量
要定义变量,可以使用var操作符,后跟变量名 ES实现变量初始化,因此可以同时定义变量并设置它的值 使用var操作符定义的变量会成为包含它的函数的局部变量。 在函数内定义变量时省略var操作符,可以创建一个全局变量 如果需要定义…...
