Fair Graph RepresentationLearning via Diverse Mixture-of-Experts
发表于:WWW23
推荐指数: #paper/⭐⭐
问题背景:
背景
现实世界的数据很多样,阻止GNN学习公平的表示。当去偏见化后,他们面临着可学知识不足且属性有限的重大问题
解决方法:
应对公平训练导致可学习知识有限的挑战,G-Fame由多个专家神经网络组成,每个神经网络都包含自己的参数,以学习不同的知识,以实现节点表示的多样化。
此外,为了提高模型对可学习知识缺乏的抵抗力,我们提出了G-Fame++,其中我们从不同的角度设计了三种不同的策略:(1)从节点表示的角度,引入嵌入多样性正规化,使节点能够在消息传递过程中从邻居那里捕获更多不同的信息;(2)从层的角度出发,设计层多样性规则化,使不同层的输出多样化,使浅层和深层都能获得不同的表示;(3)从参数权重冗余的角度出发,提出专家权重正规化,使专家的权重参数多样化,使每个专家都能捕捉到不同的信息
框架图:
余知识
公平图增强
Fairness-Based 图增强
m i j = { 1 s i ≠ s j ∀ i , j ∈ N 0 o t h e r w i s e \left.m_{ij}=\left\{\begin{array}{cc}1&s_i\neq s_j&\forall i,j\in\mathcal{N}\\0&\mathrm{otherwise}\end{array}\right.\right. mij={10si=sjotherwise∀i,j∈N
其中, m i j = 1 m_{ij}=1 mij=1表示两个节点,他们拥有不同敏感属性是连接的。M代表mask矩阵去mask邻接矩阵。我们重新构建mask矩阵:(加了阈值)
r r ( m i j ) = { m i j with probability: p ( m i j ) = 1 2 + δ 1 − m i j with probability: p ( 1 − m i j ) = 1 2 − δ \left.rr(m_{ij})=\left\{\begin{array}{ll}m_{ij}&\text{with probability: }p(m_{ij})=\frac12+\delta\\1-m_{ij}&\text{with probability: }p(1-m_{ij})=\frac12-\delta\end{array}\right.\right. rr(mij)={mij1−mijwith probability: p(mij)=21+δwith probability: p(1−mij)=21−δ
最后,公平矩阵可以表示为:
A f a i r = A ∘ r r ( M ) A_{f\boldsymbol{air}}=A\circ rr(M) Afair=A∘rr(M)
(相当于图结构学习)
公平训练
min θ L ( D ; θ ) + λ ∥ θ ∥ 2 2 , s . t . Ω ( D ; θ ) < 0 , \min_\theta\quad\mathcal{L}(\mathcal{D};\theta)+\lambda\|\theta\|_2^2,\quad\mathrm{s.t.~}\Omega(\mathcal{D};\theta)<0, θminL(D;θ)+λ∥θ∥22,s.t. Ω(D;θ)<0,
混合专家
y = ∑ i ∈ R q i ( x ) E i ( x ) , y=\sum_{i\in\mathcal{R}}q_i(x)E_i(x), y=i∈R∑qi(x)Ei(x),
其中,q是门控,E是专家
每层的门控由下个函数计算:
q i ( x ) = exp ( H ( x ) i ) ∑ j = 0 N exp ( H ( x ) j ) , q_i(x)=\frac{\exp(H(x)_i)}{\sum_{j=0}^N\exp(H(x)_j)}, qi(x)=∑j=0Nexp(H(x)j)exp(H(x)i),
模型架构

G-FAME:图公平混合专家
传播函数:
h v ( l ) = COMBINE ( G-FAME ( l ) ( h v ( l − 1 ) ) , m v ( l ) ) ) , m v ( l ) = AGGREGATE ( { G-FAME ( l ) ( h u ( l − 1 ) ) , ∀ u ∈ N ( v ) } ) \begin{aligned}&h_{v}^{(l)}=\text{COMBINE}\left(\text{G-FAME}^{(l)}(h_{v}^{(l-1)}),m_{v}^{(l)})\right),\\&m_{v}^{(l)}=\text{AGGREGATE}\left(\left\{\text{G-FAME}^{(l)}(h_{u}^{(l-1)}),\forall u\in N(v)\right\}\right)\end{aligned} hv(l)=COMBINE(G-FAME(l)(hv(l−1)),mv(l))),mv(l)=AGGREGATE({G-FAME(l)(hu(l−1)),∀u∈N(v)})
实际就是GNN的传播函数
G − F A M E ( l ) ( h v ( l − 1 ) ) = ∑ i ∈ H ( l ) q i ( l ) ( h v ( l − 1 ) ) W i ( l ) ( h v ( l − 1 ) ) , \mathrm{G-FAME}^{(l)}(h_v^{(l-1)})=\sum_{i\in\mathcal{H}^{(l)}}q_i^{(l)}(h_v^{(l-1)})W_i^{(l)}(h_v^{(l-1)}), G−FAME(l)(hv(l−1))=i∈H(l)∑qi(l)(hv(l−1))Wi(l)(hv(l−1)),
G-FAME++ 加了多个正则化操作
样本多样性
嵌入正则化:让邻居样本相近,非邻居样本相远
L E D = − log ∑ v j ∈ V exp ( sin ( z i , z j ) / τ ) ∑ v k ∈ V exp ( sin ( z i , z k ) / τ ) , \mathcal{L}_{ED}=-\log\frac{\sum_{\boldsymbol{v}_j\in V}\exp(\sin(z_i,z_j)/\tau)}{\sum_{\boldsymbol{v}_k\in V}\exp(\sin(z_i,z_k)/\tau)}, LED=−log∑vk∈Vexp(sin(zi,zk)/τ)∑vj∈Vexp(sin(zi,zj)/τ),
层正则多样性
r cosine ( z l a , z l b ) = 1 ∣ V ∣ ∑ v i ∈ V ∣ z i l a ⊤ z i l b ∣ ∥ z i l a ∥ 2 ∥ z i l b ∥ 2 , r_{\text{cosine}}\left(z^{l_{a}}, z^{l_{b}}\right)=\frac{1}{|V|}\sum_{v_{i}\in V}\frac{\left|z_{i}^{l_{a}\top} z_{i}^{l_{b}}\right|}{\left\|z_{i}^{l_{a}}\right\|_{2}\left\|z_{i}^{l_{b}}\right\|_{2}}, rcosine(zla,zlb)=∣V∣1vi∈V∑ zila 2 zilb 2 zila⊤zilb ,
用对比损失去让相近层数靠近,相远层数相远
r contrast ( z l a , z l b ) = − 1 ∣ V ∣ ∑ v i ∈ V log exp ( z i l a ⊤ z i l b ) exp ( z i l a ⊤ z i l b ) + exp ( z i l a ⊤ ( ∑ j ≠ i z j l b n − 1 ) ) r_{\text{contrast}}\left(z^{l_{a}}, z^{l_{b}}\right) = -\frac{1}{|V|} \sum_{v_{i}\in V} \log \frac{\exp\left(z_{i}^{l_{a}\top} z_{i}^{l_{b}}\right)}{\exp\left(z_{i}^{l_{a}\top} z_{i}^{l_{b}}\right) + \exp\left(z_{i}^{l_{a}\top} \left(\frac{\sum_{j\neq i} z_{j}^{l_{b}}}{n-1}\right)\right)} rcontrast(zla,zlb)=−∣V∣1vi∈V∑logexp(zila⊤zilb)+exp(zila⊤(n−1∑j=izjlb))exp(zila⊤zilb)
L L D = ∑ l a , l b ∈ L ∣ a ≠ b r c o s i n e ( z l a , z l b ) + r c o n t r a s t ( z l a , z l b ) , \mathcal{L}_{LD}=\sum_{l_a,l_b\in L|_{a\neq b}}r_{cosine}(z^{l_a},z^{l_b})+r_{contrast}(z^{l_a},z^{l_b}), LLD=la,lb∈L∣a=b∑rcosine(zla,zlb)+rcontrast(zla,zlb),
专家多样性
max { W 1 ^ , . . . , W m ^ } ∈ S t − 1 { L M H S ( W ^ ) : = min i ≠ j ρ ( W i ^ , W j ^ ) } \max_{\{\hat{W_1},...,\hat{W_m}\}\in\mathbb{S}^{t-1}}\{\mathcal{L}_{\mathrm{MHS}}(\hat{W}):=\min_{i\neq j}\rho(\hat{W_i},\hat{W_j})\} {W1^,...,Wm^}∈St−1max{LMHS(W^):=i=jminρ(Wi^,Wj^)}
其中, ω ^ i = v e c ( W i ) ∣ ∣ v e c ( W i ) ∣ ∣ 2 \hat{\omega}_{i}=\frac{\mathrm{vec}(W_{i})}{||\mathrm{vec}(W_{i})||_{2}} ω^i=∣∣vec(Wi)∣∣2vec(Wi), S t − 1 : = { ω ^ ∈ R ∣ ∣ ∣ ω ^ ∣ ∣ 2 = 1 } \mathbb{S}^{t-1}:=\{\hat{\omega}\in\mathbb{R}| ||\hat{\omega}||_{2}=1\} St−1:={ω^∈R∣∣∣ω^∣∣2=1}, ρ ( ⋅ , ⋅ ) \rho(\cdot,\cdot) ρ(⋅,⋅)表示两个W的最短距离。
最终损失:
L G − F A M E + + = L G T + L E D + L L D + L M H S . \mathcal{L}_{\mathrm{G-FAME++}}=\mathcal{L}_{GT}+\mathcal{L}_{ED}+\mathcal{L}_{LD}+\mathcal{L}_{MHS}. LG−FAME++=LGT+LED+LLD+LMHS.
其实,如上可以总结:需要让专家之间的差距变大,否则没有意义。
相关文章:
Fair Graph RepresentationLearning via Diverse Mixture-of-Experts
发表于:WWW23 推荐指数: #paper/⭐⭐ 问题背景: 背景 现实世界的数据很多样,阻止GNN学习公平的表示。当去偏见化后,他们面临着可学知识不足且属性有限的重大问题 解决方法: 应对公平训练导致可学习知识…...
电机驱动开发之驱动板
目录 1.主要器件选型2.原理图设计3.PCB绘制电源调理驱动电路电流反馈位置反馈 4.PCB绘制5.打板验证6.总结 1.主要器件选型 器件参数封装理由LDOLM317DCYR (24V-12V 12V-5V)SOT-223小电流应用 LDO比DCDC噪声小响应快更为稳定预驱FD6288TTssop-20常见无刷…...
STM32F1 HAL库笔记2_HAL 系统驱动程序
1、HAL 固件驱动程序 API 1.1、如何使用此驱动程序 通用 HAL 驱动程序包含一组通用的 API,PPP 外设驱动程序可以使用这些 API 来开始使用 HAL。HAL 包含两个 API 类别: • 常见的 HAL API • 服务 HAL API 1.2、初始化和去初始化函数 本节提供的功能&a…...
el-table实现当内容过多时,el-table显示滚动条,页面不显示滚动条
估计有不少小伙伴在开发公司的ERP使用el-table都会遇到这么一个问题,就是产品经理提出,页面不出现滚动条,因为不美观。但是当el-table内容过多,超过页面的宽度时候,页面就会有滚动条。那应该如何解决呢?能不能让滚动条…...
Java面试篇基础部分-Java中的异常以及异常处理
导语 在实际的开发过程中,往往会遇到各种各样的编程异常,如何处理这些异常,直接会影响到整个程序和系统的稳定性,如果不能在合适的地方抛出合适的异常或者是对异常进行捕获。那么就会影响到整个程序的运行。所以如何处理异常,是作为每个开发者来说必不可少的开发技能。…...
win11 MySQL的坑
最近升级了系统,导致以前的安装的两个版本MySQL服务无法启动,只能在mysql的bin目录,执行mysqld --console才能启动,mysqld都无法启动, 所幸进行了数据库初始化,这次在MySQL的bin目录执行 mysqld或者mysqld …...
stm32单片机个人学习笔记1(简单介绍)
前言 本篇文章属于stm32单片机(以下简称单片机)的学习笔记,来源于B站教学视频。下面是这位up主的视频链接。本文为个人学习笔记,只能做参考,细节方面建议观看视频,肯定受益匪浅。 STM32入门教程-2023版 细…...
python中@staticmethod、@classmethod用法
1、类的基础介绍 类对象:定义的类就是类对象 类属性:定义在__init__ 外部的变量 类方法:定义在类中,且被classmethod 装饰的方法 实例对象:类对象实例化后就是实例对象 实例属性:定义在__init__内部带…...
Harmony Next 文件命令操作(发送、读取、媒体文件查询)
查询文件位置 hdc shell mediatool query IMG_20240902_204224.jpg 输出示例 拉取文件 hdc file recv /storage/cloud/100/files/Photo/4/IMG_1725281044_036.jpg aa.jpg 发送文件 hdc file send aa.jpg /storage/media/100/local/files/Docs/Download/ab.jpg 下载目录位置…...
Go语言中的链表与双向链表实现
链表基础 链表是一种由有限元素组成的数据结构,其中每个元素至少使用两个内存空间:一个存储实际数据,另一个存储指向下一个元素的指针,从而形成一个元素序列构成链表。链表的第一个元素称为头结点,而最后一个元素通常…...
开始一个WPF项目时的记忆重载入
目前在工业软件的UI开发方案选择中,WPF仍然是一个重要的选项。 但是其固有的复杂性,对于像我这样,并不是一直在从事界面开发的人来说,每次重启,都需要一两天的适应的时间。所以这里稍微写一个笔记。 还是老办法&…...
用go语言实现树和哈希表算法
算法复杂度 判断一个算法的效率通常基于其计算复杂度,这主要与算法访问输入数据的次数有关。计算机科学中常用大O表示法来描述算法的复杂度。例如,O(n)的算法只需访问一次输入数据,因此优于O(n)的算法,后者则优于O(n)的算法&…...
基于SpringBoot+Vue+MySQL的校园健康驿站管理系统
系统展示 用户前台界面 管理员后台界面 系统背景 本文设计并实现了一个基于SpringBoot后端、Vue前端与MySQL数据库的校园健康驿站管理系统。该系统旨在通过数字化手段,全面管理学生的健康信息,包括体温监测、疫苗接种记录、健康状况申报等,为…...
深入理解MATLAB中的事件处理机制
在MATLAB中,事件处理机制是一种强大的工具,它允许对象之间的交互和通信。这种机制基于观察者设计模式,其中一个对象(观察者)监听另一个对象(发布者)的状态变化。当发布者的状态发生变化时&#…...
线程--线程同步
这里写目录标题 同步概念线程同步概念数据混乱原因 互斥量原理锁的注意事项1、cpu时间轮片2、建议锁总结 使用锁来管理线程同步问题产生主要函数init、destorylock、unlock代码注意事项(锁的粒度) try锁死锁出现原因图解 读写锁特性图解函数总览init、de…...
【QT】Qt窗口
欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:QT 目录 👉🏻菜单栏设置👉🏻QToolBar练习 👉🏻QStausBar👉🏻Q…...
场外个股期权怎么给股票加杠杆?
今天期权懂带你了解场外个股期权怎么给股票加杠杆?场外期权交易通过向证券公司支付一定额度的股票期权费,然后买入大额的股票持仓,从而实现的杠杆交易。 买入看涨期权 操作:支付权利金购买看涨期权。 杠杆作用: 期…...
【Docker部署ELK】(7.15)
1、拉取镜像 docker pull docker.elastic.co/elasticsearch/elasticsearch:7.15.0 docker pull docker.elastic.co/kibana/kibana:7.15.0 docker pull docker.elastic.co/logstash/logstash:7.15.02、配置文件(解压资源到D盘DOCKER目录下) 2.1 配置文件…...
UE4_后期处理_后期处理材质及后期处理体积一
后期处理效果 在渲染之前应用于整个渲染场景的效果。 后期处理效果(Post-processing effect)使美术师和设计师能够对影响颜色、色调映射、光照的属性和功能进行组合选择,从而定义场景的整体外观。要访问这些功能,可以将一种称为…...
【PyQt6 应用程序】基于QtDesigner做一个用户登录页面
在当今的软件开发领域,用户界面(UI)设计和后端编程是创建现代、互动应用程序的两大重要组成部分。尤其是在开发具有用户登录功能的应用程序时,不仅要注重外观和用户体验的设计,还要确保后端逻辑的安全性和可靠性。 本文将介绍如何使用PyQt6框架结合UI设计,实现一个简单而…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...
