AI大模型需要学什么?怎么学?从零基础入门大模型(保姆级),从这开始出发!
一.初聊大模型
1.为什么要学习大模型?
在学习大模型之前,你不必担心自己缺乏相关知识或认为这太难。我坚信,只要你有学习的意愿并付出努力,你就能够掌握大模型,并能够用它们完成许多有意义的事情。在这个快速变化的时代,虽然新技术和概念不断涌现,但希望你能静下心来,踏实地学习。一旦你精通了某项技术,你就能够用它来实现自己的目标,甚至可能找到理想的工作或完成具有挑战性的项目。
在众多的技术中,大模型因其强大的功能和广泛的应用而备受推崇。
那么,为什么要学习大模型呢?
首先,大模型在处理复杂数据和任务时展现出无与伦比的能力,如自然语言处理、图像识别和生成等。其次,大模型能够处理大量的数据,这对于数据挖掘、信息检索和知识发现等领域至关重要。此外,大模型也在推动人工智能的前沿发展,如自动化测试、网络安全和智能决策系统等。
大模型的学习不仅能够提升你的技术能力,还能够帮助你更好地理解数据科学和人工智能的原理。随着大模型在各个行业的应用越来越广泛,掌握这一技术将为你提供更多的职业机会。从科学研究到商业应用,从金融服务到医疗保健,大模型正在成为推动创新和效率提升的关键因素。
学习大模型不仅是因为它们在当今和未来的技术领域中占据重要地位,更是因为它们有能力解决复杂问题并创造新的可能性。
2.大模型的优势
大模型最大的优势在于其强大的功能和广泛的应用。有时候,研究人员或开发者的需求不仅仅是快速的运行速度,而是能够处理复杂问题的能力。对于很多挑战性的任务,使用大模型能够大大减轻程序设计的负担,从而显著提高项目的质量。其易用性和灵活性也能让新手迅速上手。
虽然大模型在底层运算上可能不如一些特定的算法快速,但大模型清晰的结构和强大的能力能够解放开发者的大量时间,同时也能方便地与其他技术(如传统机器学习算法)结合使用。
因此,从来没有一种技术能够像大模型这样同时深入到这么多领域,并且大模型支持跨平台操作,也支持开源,拥有丰富的预训练模型。尤其随着人工智能的持续火热,大模型 在学术界和工业界的关注度持续攀升,越来越多的技术爱好者、行业关注者也都开始学习和应用大模型。
3、大模型学习建议
在学习大模型的过程中,不要因为自己的基础薄弱或者之前没有接触过相关领域就想要放弃。记住,很多人在起跑线前就选择退出,但只要你沉下心来,愿意付出努力,就一定能够掌握。在学习的过程中,一定要亲自动手去实践,因为只有通过编写代码、实际操作,你才能够逐渐积累经验。
同时,遇到错误和挑战也是不可避免的,甚至可以说是学习的一部分。当你遇到错误时,学会利用各种资源去解决,比如搜索引擎、开源论坛、社区和学习群组,这些都是你提升学习能力的好帮手。如果实在找不到错误的解决办法,可以来公众号或者相关学习平台上寻求帮助。
接下来,我为你提供一份大模型学习路径的参考,包括:基础知识了解、理论学习、实践操作、专项深入、项目应用、拓展研究等步骤。你可以根据这个路径,结合自己的实际情况,制定合适的学习计划。
这里,我分享一些学习大模型的历程和技巧。我最初接触大模型是因为工作需要,那时大模型还没有像现在这样普及,资料也相对较少。但通过坚持学习,我也逐渐掌握了大模型的应用。以下是一些建议:
先从了解大模型的基础知识开始,可以通过阅读相关书籍、学术论文或者参加在线课程。
学习过程中不要只看理论知识,一定要动手实践。可以尝试使用一些开源的大模型框架,如TensorFlow、PyTorch等,进行实际操作。
在掌握基础理论后,可以尝试参与一些实际项目,比如数据分析、自然语言处理、图像识别等,将理论应用到实践中。遇到问题时不要害怕,要学会利用网络资源、开源社区和专业论坛寻求帮助。
不断深化学习,可以参加一些专业培训课程,或者深入研究最新的学术论文,保持对大模型领域的最新动态的了解。
学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:
If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?
关于大模型技术储备
学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。
AI大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起
1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程
第2章 大语言模型基础
2.1 Transformer 模型
嵌入表示层
注意力层
前馈层
残差连接与层归一化
编码器和解码器结构
2.2 生成式预训练语言模型 GPT
无监督预训练
有监督下游任务微调
基于 HuggingFace 的预训练语言模型实践
2.3 大语言模型结构
LLaMA 的模型结构
注意力机制优化
第3章 大语言模型基础
3.1 数据来源
通用数据
专业数据
3.2 数据处理
低质过滤
冗余去除
隐私消除
词元切分
3.3 数据影响分析
数据规模影响
数据质量影响
数据多样性影响
3.4 开源数据集合
Pile
ROOTS
RefinedWeb
SlimPajama
第4章 分布式训练
4.1 分布式训练概述
4.2 分布式训练并行策略
数据并行
模型并行
混合并行
计算设备内存优化
4.3 分布式训练的集群架构
高性能计算集群硬件组成
参数服务器架构
去中心化架构
4.4 DeepSpeed 实践
基础概念
LLaMA 分布式训练实践
第5章 有监督微调
5.1 提示学习和语境学习
提示学习
语境学习
5.2 高效模型微调
LoRA
LoRA 的变体
5.3 模型上下文窗口扩展
具有外推能力的位置编码
插值法
5.4 指令数据构建
手动构建指令
自动生成指令
开源指令数据集
5.5 Deepspeed-Chat SFT 实践
代码结构
数据预处理
自定义模型
模型训练
模型推
第6章 强化学习
6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践
第7章 大语言模型应用
7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化
第8章 大语言模型评估
8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践
总结
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
相关文章:

AI大模型需要学什么?怎么学?从零基础入门大模型(保姆级),从这开始出发!
一.初聊大模型 1.为什么要学习大模型? 在学习大模型之前,你不必担心自己缺乏相关知识或认为这太难。我坚信,只要你有学习的意愿并付出努力,你就能够掌握大模型,并能够用它们完成许多有意义的事情。在这个快速变化的时代…...
python自述3
Python 条件控制 if语句的一般形式如下所示: if condition_1: statement_block_1 elif condition_2: statement_block_2 else: statement_block_3 Python 中用 elif 代替了 else if,所以if语句的关键字为:if – elif – else。 注意: 1、每个条件后面要使用冒号 :,表…...
Redis常见的数据结构
Redis底层的数据结构是Redis高效存储和操作数据的基础,Redis提供了五种基本的数据类型,每种类型在底层都有对应的数据结构来实现。这五种数据类型分别是:字符串(String)、哈希(Hash)、列表(List…...

批量插入insert到SQLServer数据库,BigDecimal精度丢失解决办法,不动代码,从驱动层面解决
概述 相信很多人都遇到过,使用sql server数据库,批量插入数据时,BigDecimal类型出现丢失精度的问题,网上也有很多人给出过解决方案,但一般都要修改应用代码,不推荐。 丢失精度的本质是官方的驱动有BUG造成…...

随手记:uniapp小程序登录方式和小程序使用验证码登录
小程序登录方式: 方式一:小程序授权登录 通过uni.login获取 临时登录凭证code,向后端换取token。 <u-button type"primary" shape"circle" click"login">登 录</u-button>login() {uni.login({p…...

【Hadoop|HDFS篇】DataNode概述
1. DataNode的工作机制 1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。 2)DataNode启动后向NameNod…...

Vue2 VueRouter学习笔记
VueRouter 官方文档 版本对应 vue2:3.x.x vue3:4.x.x 路由:访问路径与vue组件(页面)之间的映射关系 VueRouter:Vue官方提供的插件,本质上是一个 JavaScript 库,用于在 Vue.js 应用…...

3D培训大师,化工企业安全教育与应急演练的新助力
化工企业的生产安全培训,作为保障员工生命安全与企业稳定运营的基石,其重要性不言而喻。传统的培训方式内容僵化、形式单一缺乏互动、效果难以评估,越来越不适应化工企业的实际需求。因此,探索和应用更为高效、创新的培训工具&…...
斯坦福大学论文润色chat-gpt指令
Quick Prompts快速提示 To enhance text clarity-为了增强文本清晰度 As a non-native English speaker, kindly help me revise the following text for improved understand clarity. Please check for spelling and sentence structure errors and suggest alternatives.为…...

简单硬件在环搭建(ROS+Prescan+Carsim+simulink)
本文通过ROSPrescanCarsimsimulink搭建简单的硬件在环仿真测试平台。 系统架构如下: 在Windows中运行prescan场景仿真软件,在jetson Nano中运行ROS,硬件上两台电脑通过一根网线相连传输信息; 1.prescan与carsim的集成 在C:\car…...

【Python 数据分析学习】Pandas基础与应用(1)
题目 1 Pandas 简介1.1 主要特征1.2 Pandas 安装 2 Pandas中的数据结构2.1 Series 数据结构和操作2.1.1 Series的数据结构2.1.2 Seres的操作 2.2 DataFrame 数据结构和操作2.2.1 DataFrame 数据结构2.2.2 Dataframe 操作2.2.3 DateFrame 的特殊操作 2.3 Series 和 DataFrame 的…...

pytorch入门(1)——pytorch加载数据初认识
环境配置及其安装: 2023最新pytorch安装(超详细版)-CSDN博客 pytorch加载数据初认识 Dataset:创建可被Pytorch使用的数据集 提供一种方式获取数据及其label Dataloader:向模型传递数据 为网络提供不同的数据形式 …...
Spring下载文件
1、controller /*** 下载文件通过ID** param auditInformationDTO 靓号稽核文件DTO* param servletResponse 响应体*/ GetMapping(value "/downloadAuditFileByAuditFileId") public void downloadAuditFileByAuditFileId(ModelAttribute final GoodNumberAuditInf…...
如何在数据库中备份表:操作指南与注意事项
在数据库管理中,备份表是一种常见的操作,它可以帮助我们保存数据的当前状态,以便在需要时进行恢复或分析。备份表可以通过创建一个新表并复制原表的所有数据到新表中来实现。 以下是具体的SQL语句: CREATE TABLE backup_table A…...

【数据结构】第八节:链式二叉树
个人主页: NiKo 数据结构专栏: 数据结构与算法 源码获取:Gitee——数据结构 一、二叉树的链式结构 typedef int BTDataType; typedef struct BinaryTreeNode {BTDataType data;struct BinaryTreeNode* left; // 左子树根节点struct BinaryT…...

Fair Graph RepresentationLearning via Diverse Mixture-of-Experts
发表于:WWW23 推荐指数: #paper/⭐⭐ 问题背景: 背景 现实世界的数据很多样,阻止GNN学习公平的表示。当去偏见化后,他们面临着可学知识不足且属性有限的重大问题 解决方法: 应对公平训练导致可学习知识…...

电机驱动开发之驱动板
目录 1.主要器件选型2.原理图设计3.PCB绘制电源调理驱动电路电流反馈位置反馈 4.PCB绘制5.打板验证6.总结 1.主要器件选型 器件参数封装理由LDOLM317DCYR (24V-12V 12V-5V)SOT-223小电流应用 LDO比DCDC噪声小响应快更为稳定预驱FD6288TTssop-20常见无刷…...
STM32F1 HAL库笔记2_HAL 系统驱动程序
1、HAL 固件驱动程序 API 1.1、如何使用此驱动程序 通用 HAL 驱动程序包含一组通用的 API,PPP 外设驱动程序可以使用这些 API 来开始使用 HAL。HAL 包含两个 API 类别: • 常见的 HAL API • 服务 HAL API 1.2、初始化和去初始化函数 本节提供的功能&a…...
el-table实现当内容过多时,el-table显示滚动条,页面不显示滚动条
估计有不少小伙伴在开发公司的ERP使用el-table都会遇到这么一个问题,就是产品经理提出,页面不出现滚动条,因为不美观。但是当el-table内容过多,超过页面的宽度时候,页面就会有滚动条。那应该如何解决呢?能不能让滚动条…...

Java面试篇基础部分-Java中的异常以及异常处理
导语 在实际的开发过程中,往往会遇到各种各样的编程异常,如何处理这些异常,直接会影响到整个程序和系统的稳定性,如果不能在合适的地方抛出合适的异常或者是对异常进行捕获。那么就会影响到整个程序的运行。所以如何处理异常,是作为每个开发者来说必不可少的开发技能。…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...