当前位置: 首页 > news >正文

SpringBoot多数据源配置

 1、添加依赖

        <!-- 数据库驱动 --><!--mysql--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>${mysql-connector-java.version}</version><scope>runtime</scope></dependency><!-- mybatis-plus --><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>${mybatis-plus.version}</version></dependency><!-- druid 连接池--><dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>${druid.version}</version></dependency><!-- 动态数据源 --><dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot-starter</artifactId><version>${dynamic-datasource-spring-boot-starter.version}</version></dependency>

2、添加配置

spring:datasource:dynamic:druid: # 全局druid参数,绝大部分值和默认保持一致。# 连接池的配置信息# 初始化大小,最小,最大initial-size: 5min-idle: 5maxActive: 20# 配置获取连接等待超时的时间maxWait: 60000# 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒timeBetweenEvictionRunsMillis: 60000# 配置一个连接在池中最小生存的时间,单位是毫秒minEvictableIdleTimeMillis: 300000validationQuery: SELECT 1testWhileIdle: truetestOnBorrow: falsetestOnReturn: false# 打开PSCache,并且指定每个连接上PSCache的大小poolPreparedStatements: truemaxPoolPreparedStatementPerConnectionSize: 20# 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙filters: stat,slf4j# 通过connectProperties属性来打开mergeSql功能;慢SQL记录connectionProperties: druid.stat.mergeSql\=true;druid.stat.slowSqlMillis\=5000primary: master #设置默认的数据源或者数据源组,默认值即为masterdatasource:master:url: jdbc:mysql://xx.xx.xx.xx:3306/dynamicusername: rootpassword: 123456driver-class-name: com.mysql.jdbc.Driverd2:url: jdbc:mysql://xx.xx.xx.xx:3307/dynamicusername: rootpassword: 123456driver-class-name: com.mysql.jdbc.Driverautoconfigure:exclude:  com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceAutoConfigure # 去除druid配置

DruidDataSourceAutoConfigure会注入一个DataSourceWrapper,其会在原生的spring.datasource下找 url, username, password 等。动态数据源 URL 等配置是在 dynamic 下,因此需要排除,否则会报错。排除方式有两种,一种是上述配置文件排除,还有一种可以在项目启动类排除;推荐使用配置文件配置

@SpringBootApplication(exclude = DruidDataSourceAutoConfigure.class)
public class Application {public static void main(String[] args) {SpringApplication.run(Application.class, args);}
}

3、使用@DS区分数据源 

给使用非默认数据源添加注解@DS
@DS可以注解在 方法 上和  上,同时存在方法注解优先于类上注解。
注解在 service 实现或 mapper 接口方法上,不要同时在 service 和 mapper 注解

mapper上使用

@DS("db2") 
public interface UserMapper extends BaseMapper<User> {
}

service上使用

@Service
@DS("db2")
public class ModelServiceImpl extends ServiceImpl<ModelMapper, Model> implements IModelService {}

方法上使用

@Select("SELECT * FROM user")
@DS("db2")
List<User> selectAll();

 

参考

SpringBoot多数据源配置_springboot配置多数据源-CSDN博客

SpringBoot多数据源配置_springboot配置多数据源-CSDN博客

相关文章:

SpringBoot多数据源配置

1、添加依赖 <!-- 数据库驱动 --><!--mysql--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>${mysql-connector-java.version}</version><scope>runtime</sco…...

影响画布微信小程序canvas及skyline和webview用户界面布局的关键流程

影响微信小程序画布canvas及skyline和webview用户界面布局的关键流程 目录 影响微信小程序画布canvas及skyline和webview用户界面布局的关键流程 一、微信小程序canvas开发流程 1.1、官方指南 1.2、客制化开发 第一步&#xff1a;在 WXML 中添加 canvas 组件 第二步&…...

MATLAB图像处理

MATLAB图像处理 MATLAB&#xff0c;作为美国MathWorks公司出品的商业数学软件&#xff0c;以其强大的矩阵运算能力和丰富的函数库&#xff0c;在图像处理领域得到了广泛的应用。MATLAB不仅提供了基础的图像处理功能&#xff0c;还通过图像处理工具箱&#xff08;Image Process…...

【编程底层思考】性能监控和优化:JVM参数调优,诊断工具的使用等。JVM 调优和线上问题排查实战经验总结

JVM性能监控和优化是确保Java应用程序高效运行的关键环节。以下是一些JVM性能监控和优化的方法&#xff0c;以及使用诊断工具和实战经验的总结&#xff1a; 一、JVM参数调优&#xff1a; 堆大小设置 : - Xms&#xff1a;设置JVM启动时的初始堆大小。 - -Xmx&#xff1a;设置J…...

数据库的实施过程分析

在完成了数据库的逻辑结构设计和物理结构设计后&#xff0c;下一步就是将设计成果转化为现实&#xff0c;这一步骤被称为数据库的实施。数据库实施是数据库开发过程中至关重要的一环&#xff0c;它标志着从设计阶段向实际应用的过渡。本文将为你详细讲解数据库实施的各个关键步…...

【Kubernetes】常见面试题汇总(十二)

目录 36.简述 Kubernetes 的负载均衡器&#xff1f; 37.简述 Kubernetes 各模块如何与 APl Server 通信&#xff1f; 38.简述 Kubernetes Scheduler 作用及实现原理&#xff1f; 36.简述 Kubernetes 的负载均衡器&#xff1f; &#xff08;1&#xff09;负载均衡器是暴露服务…...

基于SpringBoot+Vue+MySQL的美术馆管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着文化艺术产业的蓬勃发展&#xff0c;美术馆作为展示与传播艺术的重要场所&#xff0c;其管理工作变得日益复杂。为了提升美术馆的运营效率、优化参观体验并加强艺术品管理&#xff0c;我们开发了基于SpringBootVueMySQL的美…...

golang面试

算法&#xff1a; 1.提取二进制位最右边的 r i & (~i 1) 2.树上两个节点最远距离&#xff0c;先考虑头结点参与不参与。 3.暴力递归改dp。 1.确定暴力递归方式。 2.改记忆化搜索 3.严格表方式&#xff1a; 分析可变参数变化范围&#xff0c;参数数量决定表维度、 …...

基于"WT2605C的智能血压计:AI对话引领个性化健康管理新时代,健康守护随时在线

在当今快节奏的生活中&#xff0c;健康管理已成为我们日常不可或缺的一部分。随着科技的进步&#xff0c;智能设备正逐步融入我们的日常生活&#xff0c;为健康管理带来前所未有的便捷与智能化。今天&#xff0c;让我们共同探索WT2605C AI在线方案如何在血压计中发挥革命性作用…...

redis高级教程

一 关系型数据库和 NoSQL 数据库 数据库主要分为两大类&#xff1a;关系型数据库与 NoSQL 数据库 关系型数据库 &#xff0c;是建立在关系模型基础上的数据库&#xff0c;其借助于集合代数等数学概念和方法来处理数据库中的数据主流的 MySQL 、 Oracle 、 MS SQL Server 和 D…...

prfm命令初探

1. 前言 在查看一段neon代码时&#xff0c;发现有如下片段&#xff0c;为使用汇编进行数据预取操作。这是一个新的知识点&#xff0c;记录一下学习过程。 __asm__ volatile("prfm pldl2keep,[%0, #8192] \n""prfm pldl1keep,[%0, #1024] \n":"r"…...

AI大模型需要学什么?怎么学?从零基础入门大模型(保姆级),从这开始出发!

一.初聊大模型 1.为什么要学习大模型&#xff1f; 在学习大模型之前&#xff0c;你不必担心自己缺乏相关知识或认为这太难。我坚信&#xff0c;只要你有学习的意愿并付出努力&#xff0c;你就能够掌握大模型&#xff0c;并能够用它们完成许多有意义的事情。在这个快速变化的时代…...

python自述3

Python 条件控制 if语句的一般形式如下所示: if condition_1: statement_block_1 elif condition_2: statement_block_2 else: statement_block_3 Python 中用 elif 代替了 else if,所以if语句的关键字为:if – elif – else。 注意: 1、每个条件后面要使用冒号 :,表…...

Redis常见的数据结构

Redis底层的数据结构是Redis高效存储和操作数据的基础,Redis提供了五种基本的数据类型&#xff0c;每种类型在底层都有对应的数据结构来实现。这五种数据类型分别是&#xff1a;字符串&#xff08;String&#xff09;、哈希&#xff08;Hash&#xff09;、列表&#xff08;List…...

批量插入insert到SQLServer数据库,BigDecimal精度丢失解决办法,不动代码,从驱动层面解决

概述 相信很多人都遇到过&#xff0c;使用sql server数据库&#xff0c;批量插入数据时&#xff0c;BigDecimal类型出现丢失精度的问题&#xff0c;网上也有很多人给出过解决方案&#xff0c;但一般都要修改应用代码&#xff0c;不推荐。 丢失精度的本质是官方的驱动有BUG造成…...

随手记:uniapp小程序登录方式和小程序使用验证码登录

小程序登录方式&#xff1a; 方式一&#xff1a;小程序授权登录 通过uni.login获取 临时登录凭证code&#xff0c;向后端换取token。 <u-button type"primary" shape"circle" click"login">登 录</u-button>login() {uni.login({p…...

【Hadoop|HDFS篇】DataNode概述

1. DataNode的工作机制 1&#xff09;一个数据块在DataNode上以文件形式存储在磁盘上&#xff0c;包括两个文件&#xff0c;一个是数据本身&#xff0c;一个是元数据包括数据块的长度&#xff0c;块数据的校验和&#xff0c;以及时间戳。 2&#xff09;DataNode启动后向NameNod…...

Vue2 VueRouter学习笔记

VueRouter 官方文档 版本对应 vue2&#xff1a;3.x.x vue3&#xff1a;4.x.x 路由&#xff1a;访问路径与vue组件&#xff08;页面&#xff09;之间的映射关系 VueRouter&#xff1a;Vue官方提供的插件&#xff0c;本质上是一个 JavaScript 库&#xff0c;用于在 Vue.js 应用…...

3D培训大师,化工企业安全教育与应急演练的新助力

化工企业的生产安全培训&#xff0c;作为保障员工生命安全与企业稳定运营的基石&#xff0c;其重要性不言而喻。传统的培训方式内容僵化、形式单一缺乏互动、效果难以评估&#xff0c;越来越不适应化工企业的实际需求。因此&#xff0c;探索和应用更为高效、创新的培训工具&…...

斯坦福大学论文润色chat-gpt指令

Quick Prompts快速提示 To enhance text clarity-为了增强文本清晰度 As a non-native English speaker, kindly help me revise the following text for improved understand clarity. Please check for spelling and sentence structure errors and suggest alternatives.为…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...