小目标检测顶会新思路!最新成果刷爆遥感SOTA,参数小了18倍
遥感领域的小目标检测一直是个具有挑战性和趣味性的研究方向,同时也是顶会顶刊的常客。但不得不说,今年关于遥感小目标检测的研究热情尤其高涨,已经出现了很多非常优秀的成果。
比如SuperYOLO方法,通过融合多模态数据并执行高分辨率的目标检测,在大幅提高遥感图像中小目标的检测准确性和速度的同时,参数减少了18倍。
再比如结合顶流Mamba和YOLOv9的SOAR,在精度和效率方面都达到了SOTA,性能直接起飞,实力证明遥感小目标检测广泛的应用潜力和高精度的检测能力。
不过由于它的复杂性,遥感小目标检测还是有很多问题没有解决,但这也意味着还有不少创新空间等我们挖掘。为了方便大家找idea,我这边整理了9篇最新的遥感小目标检测论文,基本都有代码,强烈建议想发顶会的同学研读。
论文原文+开源代码需要的同学看文末
SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery
方法:本文提出了一种名为SuperYOLO的准确且快速的遥感图像目标检测方法,通过融合多模态数据并利用辅助超分辨率学习实现对多尺度小目标的高分辨率检测,同时考虑检测准确性和计算成本,取得了优于现有模型的性能表现,具有较低的参数大小和计算代价。

创新点:
-
通过引入一个简单而灵活的超分辨率(SR)分支,实现高分辨率(HR)特征表示的学习,从而能够在仅有低分辨率(LR)输入的情况下,轻松识别广阔背景中的小物体。
-
提出了一种计算友好的像素级融合方法,以对称且紧凑的方式双向组合内部信息。与特征级融合相比,它在减少计算成本的同时不会损失准确性。

SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients
方法:论文主要研究了在航空图像中小目标的检测,采用了SAHI框架结合YOLO v9和Vision Mamba模型,以及双向状态空间模型,有效解决了小目标被背景噪声遮挡的挑战,提高了检测精度和计算效率。

创新点:
-
了在轻量级YOLO v9架构上使用SAHI框架,该框架利用可编程梯度信息来减少在顺序特征提取过程中通常遇到的巨大信息损失。
-
采用了Vision Mamba模型,并结合了新颖的双向SSM进行有效的视觉上下文建模。这种模型结合了CNN的线性复杂度和Transformers的全局感受野,特别适用于遥感图像分类。

LR-FPN: Enhancing Remote Sensing Object Detection with Location Refined Feature Pyramid Network
方法:论文引入了一种新颖的位置细化特征金字塔网络(LR-FPN),增强了浅层位置信息的提取,并促进了细粒度上下文交互。LR-FPN通过浅层位置信息提取模块(SPIEM)和上下文交互模块(CIM),有效地利用了稳健的位置信息。

创新点:
-
介绍了一种插拔式的位置精化特征金字塔网络(LR-FPN),以增强浅层位置信息的提取,并促进细粒度的上下文交互。
-
引入了一个上下文交互模块(CIM),用于有效地处理空间和通道信息的交互。通过使用深度卷积和空洞深度卷积进行通道内的本地空间信息交互,并通过空洞深度卷积来处理非局部空间交互的挑战,有效地扩大了感受野并增强了空间信息的非局部交互。

HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection
方法:论文提出了一种名为HCF-Net的深度学习方法,通过多个实用模块显著提高了红外小目标检测性能。该方法包括并行化的自适应注意力模块(PPA)、维度感知选择融合模块(DASI)和多膨胀通道细化模块(MDCR)。

创新点:
-
提出了HCF-Net,这是一种从头开始训练的、层次化的上下文融合网络,用于红外小目标检测。通过多个实用模块,HCF-Net显著提高了红外小目标检测性能。
-
HCF-Net中的模块包括并行化的区域感知注意力模块(PPA)、维度感知的选择性融合模块(DASI)和多倍扩张通道细化器模块(MDCR)。这些模块通过不同的策略和技术选择,有效地解决了红外小目标检测中的困难和挑战。

关注下方《学姐带你玩AI》🚀🚀🚀
回复“遥感小目标”获取全部论文+开源代码
码字不易,欢迎大家点赞评论收藏
相关文章:
小目标检测顶会新思路!最新成果刷爆遥感SOTA,参数小了18倍
遥感领域的小目标检测一直是个具有挑战性和趣味性的研究方向,同时也是顶会顶刊的常客。但不得不说,今年关于遥感小目标检测的研究热情尤其高涨,已经出现了很多非常优秀的成果。 比如SuperYOLO方法,通过融合多模态数据并执行高分辨…...
【Ubuntu】虚拟机安装USB摄像头ROS驱动 usb_cam(最新方法)
写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作&…...
免费的成绩查询微信小程序,让家长轻松掌握学生表现
传统的教学方式在不断地被革新。在成绩查询这一环节,老师们曾经面临着繁琐的手工操作和信息安全的风险。可现如今有一个让成绩查询变得轻松、高效且安全的新工具——易查分。 过去需要花费大量时间来整理成绩,然后通过短信或者打电话的方式告知给家长。以…...
[含视频和源码]CRUD的最佳实践,联动前后端,包含微信小程序,API,HTML等(三)
关说不练假把式,在上一,二篇中介绍了我心目中的CRUD的样子 基于之前的理念,我开发了一个命名为PasteTemplate的项目,这个项目呢后续会转化成项目模板,转化成项目模板后,后续需要开发新的项目就可以基于这…...
如何把我另一个分支上的commit拿过来
在开源过程中,每一次PR都是要经过严格的review的,这期间可能会进行多次修改,补充提交,而且这一般来说不是一个很迅速的过程,此时我们可能会先往后进行开发。我一般会把项目分模块逐步建立分支,当前一个pr合…...
【rpg像素角色】俯视角-行走动画
制作像素角色的俯视角行走动画并不像看上去那么复杂,尤其是在你已经完成了角色的4个方向站立姿势之后(其中左右方向可以通过水平翻转实现)。接下来,我会一步步为你讲解如何制作行走动画。 1. 理解行走规律 在制作行走动画之前&am…...
Python时间序列分析新技能,轻松掌握时间索引
大家好,在数据分析领域,时间序列数据分析是一项非常重要的技能。Pandas作为Python中强大的数据处理库,在处理时间序列数据时提供了丰富的功能,其中时间索引的应用是时间序列分析中的关键。本文将介绍如何在Pandas中使用时间索引进…...
sklearn-逻辑回归-特征工程示例
sklearn-逻辑回归-特征工程示例 在实际应用场景中,有时候特征的数量会很多,我们出于业务考虑,也出于计算量的考虑,希望对逻辑回归进行特征选择来降维。比如在判断一个人是否会患乳腺癌的时候,医生如果看58个指标来确诊…...
RTMP播放器延迟最低可以做到多少?
技术背景 RTMP播放器的延迟可以受到多种因素的影响,包括网络状况、推流设置、播放器配置以及CDN分发等。因此,RTMP播放器的延迟并不是一个固定的数值,而是可以在一定范围内变化的。 正常情况下,网上大多看到的,针对R…...
细致刨析JDBC ① 基础篇
目录 一、JDBC概述 1.JDBC的概念 编辑2.JDBC的核心组成 ① 接口规范: ② 实现规范: 二、JDBC快速入门 1.JDBC搭建步骤 三、核心API理解 1.注册驱动 2.Connection 3.Statement 4.PreparedStatement 5.ResultSet 四、基于Preparedment实现CRUD 1.查询单行单列 2.查询单行…...
Reactive 编程-Loom 项目(虚拟线程)
Reactive 编程与 Loom 项目(虚拟线程) Java 项目 Loom 是 Oracle 在 JVM 上的一项重大变革,旨在引入 虚拟线程(Virtual Threads),以简化并发编程。传统的 Java 线程是重量级的,由操作系统管理&…...
Windows下使用MinGW编译安装zmq的步骤
背景: 在开发过程中,需要使用zmq库进行数据交互,因此需要编译zmq库。 安装步骤 软件下载 https://github.com/zeromq/libzmq.git 下载,将代码切换到git checkout 4c6cff6391分支 软件编译 cd .\libzmq\ mkdir build cd .\bu…...
电商云账户分账系统:打造高效资金流转体系
在当今的电子商务时代,随着消费者购物习惯的转变和在线交易量的激增,电商平台的运营模式也日趋复杂。为了满足多商家共存、利益共享的需求,电商分账成为了一个至关重要的环节。 电商分账是指电商平台在销售商品或服务后,根据事先…...
设计模式 -- 单例设计模式
1.1 单例 创建一个单例对象 SingleModel , SingleModel 类有它的私有构造函数和本身的一个静态实例。 SingleModel 类提供了一个静态方法,供外界获取它的静态实例。 DesignTest 我们的演示类使用 SingleModel 类来获取 SingleModel 对象。 创建 Single…...
python fastapi 打包exe
创建虚拟环境 python -m venv 国内依赖仓库 # 换源 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple pip config set install.trusted-host mirrors.aliyun.com 安装nuitka pip install nuitka 生成exe nuitka --mingw64 --show-progress --s…...
【测试开岗面试】知识点总结
1.知识点总结 Q:请你分别介绍一下单元测试、集成测试、系统测试、验收测试、回归测试 单元测试 (Unit Testing) 单元测试是对软件中最小可测试单元(通常是函数或方法)进行验证的过程。它的目的是确保每个单元在设计时的功能能够正常运行。单元测试通常由…...
【高级编程】synchronized 解决并发问题 类的线程安全类型
文章目录 并发问题同步方法同步代码块 线程安全类型ArrayListHashtableHashMapVector 多线程共享数据引发的问题 模拟 “A” “B” “C” 三人抢票,总票数10张,打印抢票情况以及剩余票数。 public class Site implements Runnable {int count 10; // …...
Speculative RAG:为知识密集型数据服务的RAG
论文链接 RAG的一个棘手问题是不知道该召回多少chunk,少了可能丢信息,多了会引入噪声信息。虽然有self-reasoning等自我反思的解决办法,但是整体链路太长,延迟高,不利于工业落地。 虽然无法面对整个服务场景ÿ…...
[Go]-抢购类业务方案
文章目录 要点:1. 抢购/秒杀业务的关键挑战2. 技术方案3.关键实现点4.性能优化建议5.其他考虑因素 细节拆分:1. **高并发处理**2.**限流与防护**3.**库存控制**4. **异步处理**5. **数据一致性**6. **常用架构设计**7. **代码示例**8. 进一步优化9. 注意…...
Android 源码多个Launcher设置默认Launcher
目录 第一部分、android10之前 一.多个launcher 启动设置默认launcher的核心类 二 在自定义服务里面设置默认Launcher 第二部分、android10之后 一、Launcher应用内置并设置为默认Launcher 1.通过ResolverActivity.java设置为默认Launcher 改法一: 改法二&am…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
